Advertisement

Physics of Atomic Nuclei

, Volume 65, Issue 6, pp 984–989 | Cite as

Some exact results for the three-layer zamolodchikov model

  • H. E. Boos
  • V. V. Mangazeev
Symposium on Integrable Systems

Abstract

In this talk, we present our recent results on the three-layer Zamolodchikov model. We discuss solutions to the Bethe ansatz equations following from functional relations. We consider two regimes I and II that differ by the signs of the spherical sides (a1, a2, a3) → (−a1, −a2, −a3). Also, we accept the two-line hypothesis for regime I and the one-line hypothesis for regime II. In the thermodynamic limit, we derive integral equations for distribution densities and solve them exactly. Using this solution, we calculate the partition function for the three-layer Zamolodchikov model and check the compatibility of this result with functional relations. We also discuss the reasons for the discrepancy with Baxter’s result of 1986.

Keywords

Integral Equation Elementary Particle Partition Function Distribution Density Recent Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Boos and V. V. Mangazeev, solv-int/9903001; J. Phys. A 32, 3041 (1999).ADSMathSciNetGoogle Scholar
  2. 2.
    H. E. Boos and V. V. Mangazeev, solv-int/9903010; J. Phys. A 32, 5285 (1999).ADSMathSciNetGoogle Scholar
  3. 3.
    H. E. Boos and V. V. Mangazeev, hep-th/0008085; Nucl. Phys. B 592, 597 (2001).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982; Mir, Moscow, 1985).Google Scholar
  5. 5.
    V. V. Bazhanov and Yu. G. Stroganov, Teor. Mat. Fiz. 52, 105 (1982).MathSciNetGoogle Scholar
  6. 6.
    M. T. Jaekel and J. M. Maillard, J. Stat. Phys. A 15, 1309 (1982).ADSMathSciNetGoogle Scholar
  7. 7.
    A. B. Zamolodchikov, Zh. Éksp. Teor. Fiz. 79, 641 (1980) [Sov. Phys. JETP 52, 325 (1980)].MathSciNetGoogle Scholar
  8. 8.
    A. B. Zamolodchikov, Commun. Math. Phys. 79, 489 (1981).CrossRefMathSciNetGoogle Scholar
  9. 9.
    V. V. Bazhanov and R. J. Baxter, J. Stat. Phys. 69, 453 (1992).CrossRefMathSciNetGoogle Scholar
  10. 10.
    V. V. Mangazeev and Yu. G. Stroganov, Mod. Phys. Lett. A 8, 34 (1994).MathSciNetGoogle Scholar
  11. 11.
    H. E. Boos, V. V. Mangazeev, and S. M. Sergeev, Int. J. Mod. Phys. A 10, 4041 (1995).ADSMathSciNetGoogle Scholar
  12. 12.
    H. E. Boos, Int. J. Mod. Phys. A 11, 313 (1996).ADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov, Commun. Math. Phys. 138, 393 (1991).CrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Date, M. Jimbo, K. Miki, and T. Miwa, Commun. Math. Phys. 137, 133 (1991).CrossRefMathSciNetGoogle Scholar
  15. 15.
    R. J. Baxter, Physica D (Amsterdam) 18, 321 (1986).ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    R. M. Kashaev, V. V. Mangazeev, and T. Nakanishi, Nucl. Phys. B 362, 563 (1991).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    R. J. Baxter and G. R. W. Quispel, J. Stat. Phys. 58, 411 (1990).CrossRefMathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • H. E. Boos
    • 2
  • V. V. Mangazeev
    • 1
    • 2
  1. 1.Centre for Mathematics and Its Applications, School of Mathematical SciencesAustralian National UniversityCanberraAustralia
  2. 2.Institute for High Energy PhysicsProtvino, Moscow oblastRussia

Personalised recommendations