Advertisement

Analog of Kelvin-Helmholtz instability on a free surface of a superfluid liquid

  • S. E. Korshunov
Condensed Matter

Abstract

We analyze the analog of the Kelvin-Helmholtz instability on the free surface of a superfluid liquid. This instability is induced by the relative motion of superfluid and normal components of the same liquid along the surface. The instability threshold is found to be independent of the value of viscosity, but turns out to be lower than in the absence of dissipation. The result is similar to that obtained for the interface between two sliding super-fluids (with different mechanisms of dissipation) and confirmed by the first experimental observation of the Kelvin-Helmholtz instability on the interface between 3He-A and 3He-B by Blaauwgeers et al. (cond-mat/0111343).

PACS numbers

67.57.Np 47.20.Ma 68.03.Kn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1989), Sec. 62, Problem 3.Google Scholar
  2. 2.
    S. E. Korshunov, Europhys. Lett. 16, 673 (1991).ADSGoogle Scholar
  3. 3.
    P. W. Egolf, J. L. Olsen, B. Roericht, and D. A. Weiss, Physica B (Amsterdam) 169, 217 (1991).ADSGoogle Scholar
  4. 4.
    M. Yu. Kagan, Zh. Éksp. Teor. Fiz. 90, 498 (1986) [Sov. Phys. JETP 63, 288 (1986)].Google Scholar
  5. 5.
    A. F. Andreev and A.Ya. Parshin, Zh. ’Eksp. Teor. Fiz. 75, 1511 (1978) [Sov. Phys. JETP 48, 763 (1978)].Google Scholar
  6. 6.
    K. O. Keshishev, A. Ya. Parshin, and A. V. Babkin, Pis’ma Zh. Éksp. Teor. Fiz. 30, 63 (1979) [JETP Lett. 30, 56 (1979)]; Zh. Éksp. Teor. Fiz. 80, 716 (1981) [Sov. Phys. JETP 53, 362 (1981)].Google Scholar
  7. 7.
    K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001).CrossRefADSGoogle Scholar
  8. 8.
    S. Sinha and Y. Castin, Phys. Rev. Lett. 87, 190402 (2001).Google Scholar
  9. 9.
    G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 75(8), 491 (2002) [JETP Lett. 75, 418 (2002)].Google Scholar
  10. 10.
    R. Blaauwgeers, V. B. Eltsov, G. Eska, et al., cond-mat/0111343 (2001).Google Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1989), Sec. 25, Problem 1.Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1989), Sec. 140, Problem 1.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • S. E. Korshunov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations