Advertisement

On the Kelvin-Helmholtz instability in superfluids

  • G. E. Volovik
Condensed Matter

Abstract

The Kelvin-Helmholtz instability in superfluids is discussed on the basis of the first experimental observation of such an instability at the interface between superfluid 3He-A and superfluid 3He-B (R. Blaauwgeers, V. B. Eltsov, G. Eska et al., cond-mat/0111343). We discuss why the Kelvin-Helmholtz criterion, the Landau critical velocity for nucleation of ripplons, and the free-energy consideration all give different values for the instability threshold.

PACS numbers

67.57.Np 47.20.Ma 68.05.−n 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Birkhoff, in Hydrodynamic Instability: Proceedings of the 13th Symposium in Applied Mathematics, New York, 1960, Ed. by G. Birkhoff, R. Bellman, and C. C. Lin (American Mathematical Society, Providence, 1962), p. 55.Google Scholar
  2. 2.
    H. L. F. von Helmholtz, Monatsberichte der königl (Akademie Wissenschaften, Berlin, 1868), p. 215.Google Scholar
  3. 3.
    Lord Kelvin (Sir W. Thomson), Mathematical and Physical Papers, Vol. 4: Hydrodynamics and General Dynamics (Cambridge Univ. Press, Cambridge, 1910).Google Scholar
  4. 4.
    Lord Rayleigh (J. W. Strutt), Scientific Papers (Cambridge Univ. Press, Cambridge, 1899), Vol. 1.Google Scholar
  5. 5.
    J. Zhang, S. Childress, A. Ubchaber, and M. Shelley, Nature 408, 835 (2000).CrossRefADSGoogle Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1989), Sect. 62, Problem 3, p. 247.Google Scholar
  7. 7.
    R. Blaauwgeers, V. B. Eltsov, G. Eska, et al., cond-mat/0111343.Google Scholar
  8. 8.
    N. B. Kopnin, Zh. Éksp. Teor. Fiz. 92, 2106 (1987) [Sov. Phys. JETP 65, 1187 (1987)]; A. J. Leggett and S. Yip, in Helium Three, Ed. by W. P. Halperin and L. P. Pitaevskii (Elsevier, Amsterdam, 1990), p. 523; S. Yip and A. J. Leggett, Phys. Rev. Lett. 57, 345 (1986); J. Palmeri, Phys. Rev. B 42, 4010 (1990).Google Scholar
  9. 9.
    C. C. Lin and D. J. Benney, in Hydrodynamic Instability: Proceedings of the 13th Symposium in Applied Mathematics, New York, 1960, Ed. by G. Birkhoff, R. Bellman, and C. C. Lin (American Mathematical Society, Providence, 1962), p. 1.Google Scholar
  10. 10.
    S. E. Korshunov, Europhys. Lett. 16, 673 (1991).ADSGoogle Scholar
  11. 11.
    M. Krusius, E. V. Thuneberg, and Ü. Parts, Physica B (Amsterdam) 197, 367 (1994); Ü. Parts, Y. Kondo, J. S. Korhonen, et al., Phys. Rev. Lett. 71, 2951 (1993).Google Scholar
  12. 12.
    E. A. Kuznetsov and P. M. Lushnikov, Zh. Éksp. Teor. Fiz. 108, 614 (1995) [JETP 81, 332 (1995)].Google Scholar
  13. 13.
    K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001).CrossRefADSGoogle Scholar
  14. 14.
    S. Sinha and Y. Castin, Phys. Rev. Lett. 87, 190402 (2001).Google Scholar
  15. 15.
    I. S. Aranson, N. B. Kopnin, and V. M. Vinokur, Phys. Rev. B 63, 184501 (2001).Google Scholar
  16. 16.
    V. M. H. Ruutu, V. B. Eltsov, A. J. Gill, et al., Nature 382, 334 (1996).CrossRefADSGoogle Scholar
  17. 17.
    S. E. Korshunov, Pis’ma Zh. Éksp. Teor. Fiz. 75(8), 496 (2002) [JETP Lett. 75, 423 (2002)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations