Semiconductors

, Volume 36, Issue 6, pp 615–620 | Cite as

Growth of diamond films on crystalline silicon by hot-filament chemical vapor deposition

  • M. V. Baidakova
  • A. Ya. Vul’
  • V. G. Golubev
  • S. A. Grudinkin
  • V. G. Melekhin
  • N. A. Feoktistov
  • A. Krüger
Atomic Structure and Nonelectronic Properties of Semiconductors

Abstract

The effect of hot-filament chemical vapor deposition conditions on the phase composition of diamond films grown on a silicon substrate was studied. The growth conditions providing the highest content of diamond phase at a growth rate of about 1 µm/h were ascertained.

Keywords

Silicon Growth Rate Growth Condition Phase Composition Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Angus and C. C. Hayman, Science 241, 913 (1988).ADSGoogle Scholar
  2. 2.
    S. Shikata, MRS Bull. 23(9), 61 (1998).Google Scholar
  3. 3.
    V. Malcher, A. Kromka, J. Janik, et al., Acta Phys. Slov. 50, 673 (2000).Google Scholar
  4. 4.
    A. Sawabe and T. Inuzuka, Appl. Phys. Lett. 46, 146 (1985).CrossRefADSGoogle Scholar
  5. 5.
    X. C. He, H. S. Shen, Z. M. Zhang, et al., Diamond Relat. Mater. 9, 1626 (2000).Google Scholar
  6. 6.
    A. M. Stoneham, I. J. Ford, and P. R. Chalker, MRS Bull. 23(9), 28 (1998).Google Scholar
  7. 7.
    C. Arnault, L. Demuynck, C. Speisser, and F. L. Normand, Eur. Phys. J. B 11, 327 (1999).CrossRefADSGoogle Scholar
  8. 8.
    N. S. Xu, J. Chen, S. Z. Deng, et al., J. Phys. D 33, 1572 (2000).ADSGoogle Scholar
  9. 9.
    Y. Chakk, R. Brener, and A. Hoffman, Appl. Phys. Lett. 66, 2819 (1995).CrossRefADSGoogle Scholar
  10. 10.
    H. Makita, K. Nishimura, N. Jiang, et al., Thin Solid Films 281, 279 (1996).CrossRefGoogle Scholar
  11. 11.
    P. Ascarelli and S. Fontana, Appl. Surf. Sci. 64(4), 307 (1993).CrossRefGoogle Scholar
  12. 12.
    B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, Phys. Rev. B 45, 11067 (1992).Google Scholar
  13. 13.
    D.-W. Kweon, J.-Y. Lee, and D. Kim, J. Appl. Phys. 69, 8329 (1991).CrossRefADSGoogle Scholar
  14. 14.
    K. E. Spear and M. Frenklach, in Synthetic Diamond: Emerging CVD Science and Technology, Ed. by K. E. Spear and J. P. Dismukes (Wiley, New York, 1994), p. 243.Google Scholar
  15. 15.
    A. K. Skider, A. P. Jacob, T. Sharda, et al., Thin Solid Films 332, 98 (1998).Google Scholar
  16. 16.
    S. Logothetidis, Appl. Phys. Lett. 69, 158 (1996).CrossRefADSGoogle Scholar
  17. 17.
    R. G. Buckley, T. D. Moustakas, L. Ye, and J. Varon, J. Appl. Phys. 66, 3595 (1989).CrossRefADSGoogle Scholar
  18. 18.
    L. Bergman and R. J. Nemanich, J. Appl. Phys. 78, 6709 (1995).ADSGoogle Scholar
  19. 19.
    Powder Diffraction File 6-675 (Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Swarthmore, 1991).Google Scholar
  20. 20.
    H. Windischmann and K. J. Gray, Diamond Relat. Mater. 4, 837 (1995).Google Scholar
  21. 21.
    V. I. Konov, A. A. Smolin, V. G. Ralchenko, et al., Diamond Relat. Mater. 4, 1073 (1995).Google Scholar
  22. 22.
    P. Keblinski, D. Wolf, F. Cleri, et al., MRS Bull. 23(9), 36 (1998).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • M. V. Baidakova
    • 1
  • A. Ya. Vul’
    • 1
  • V. G. Golubev
    • 1
  • S. A. Grudinkin
    • 1
  • V. G. Melekhin
    • 1
  • N. A. Feoktistov
    • 1
  • A. Krüger
    • 2
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Toyohashi University of TechnologyToyohashiJapan

Personalised recommendations