Advertisement

Excitations in a quantum Hall ferromagnet with strong Coulomb interaction

  • S. V. Iordanski
  • A. Kasbuba
Condensed Matter

Abstract

A quantum Hall ferromagnet is considered at integer fillings ν, provided typical Coulomb interaction energy Ec is large compared to the cyclotron energy ωH. Low-energy collective modes consist of a magnetoplasmon exciton and a gapless spin exciton. All charged excitations have a gap. The activation energy gap for a pair of charged topological excitations—skyrmion and antiskyrmion—is small, i.e., Δ< vωH. The electric charge of a skyrmion is the multiple q=eνQ, where Q is the integer topological charge.

PACS numbers

71.27.+a 73.43.Cd 71.35.Lk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Quantum Hall Effect, Ed. by E. R. Prange and S. M. Girvin (Springer-Verlag, New York, 1987; Mir, Moscow, 1989).Google Scholar
  2. 2.
    Yu. A. Bychkov, S. V. Iordanski, and G. M. Eliashberg, Pis’ma Zh. Éksp. Teor. Fiz. 33, 152 (1981) [JETP Lett. 33, 143 (1981)].Google Scholar
  3. 3.
    C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).CrossRefADSGoogle Scholar
  4. 4.
    S. L. Sondhi, A. Kahlrede, S. A. Kivelson, and E. H. Rezai, Phys. Rev. B 47, 16419 (1993).Google Scholar
  5. 5.
    J. H. Schön, Ch. Kloc, and B. Batllog, Science 288, 2338 (2000).ADSGoogle Scholar
  6. 6.
    V. M. Pudalov, S. T. Semenchinski, and V. S. Edelman, Zh. Éksp. Teor. Fiz. 89, 1870 (1985) [Sov. Phys. JETP 62, 1079 (1985)].Google Scholar
  7. 7.
    R. Price and S. Das Sarma, Phys. Rev. B 54, 8033 (1996).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Dover, New York, 1963).Google Scholar
  9. 9.
    J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960); J. M. Luttinger, Phys. Rev. 119, 1153 (1960).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    G. Volovik, Phys. Rep. 351(4), 195 (2001).CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    W. Kohn, Phys. Rev. 123, 1242 (1961).CrossRefADSzbMATHGoogle Scholar
  12. 12.
    S. V. Iordanski, S. G. Plyasunov, and V. I. Fal’ko, Zh. Éksp. Teor. Fiz. 115, 716 (1999) [JETP 88, 392 (1999)].Google Scholar
  13. 13.
    R. R. Rajaraman, Solitons and Instantons: an Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1982; Mir, Moscow, 1985).Google Scholar
  14. 14.
    H. A. Fertig, L. Brey, R. Cote, and A. H. MacDonald, Phys. Rev. B 50, 11018 (1994).Google Scholar
  15. 15.
    Yu. A. Bychkov, T. Maniv, and I. D. Vagner, Phys. Rev. B 53, 10148 (1995).Google Scholar
  16. 16.
    S. Dickmann, Phys. Rev. B (2002) (in press); cond-mat/0107272.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • S. V. Iordanski
    • 1
  • A. Kasbuba
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations