Density of states in a mesoscopic SNS junction

  • P. M. Ostrovsky
  • M. A. Skvortsov
  • M. V. Feigel’man
Condensed Matter


The semiclassical theory of proximity effects predicts a gap Eg∼ℏD/L2 in the excitation spectrum of a long diffusive superconductor/normal-metal/superconductor (SNS) junction. Mesoscopic fluctuations lead to anomalously localized states in the normal part of the junction.As a result, a nonzero, yet exponentially small, density of states (DOS) appears at energies below Eg. In the framework of the supermatrix nonlinear σ model, these prelocalized states are due to the instanton configurations with broken supersymmetry. The exact result for the DOS near the semiclassical threshold is found, provided the dimensionless conductance of the normal part GN is large. The case of poorly transparent interfaces between the normal and superconductive regions is also considered. In this limit, the total number of subgap states may be large.

PACS numbers

73.21.−b 74.50.+r 74.80.Fp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Vavilov, P. W. Brower, V. Ambegaokar, and C. W. J. Beenakker, Phys. Rev. Lett. 86, 874 (2001).CrossRefADSGoogle Scholar
  2. 2.
    P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigel’man, Phys. Rev. Lett. 87, 027002 (2001).Google Scholar
  3. 3.
    A. Lamacraft and B. D. Simons, Phys. Rev. Lett. 85, 4783 (2000).CrossRefADSGoogle Scholar
  4. 4.
    A. Lamacraft and B. D. Simons, Phys. Rev. B 64, 014514 (2001).Google Scholar
  5. 5.
    A. A. Golubov and M. Yu. Kupriyanov, Zh. Éksp. Teor. Fiz. 96, 1420 (1989) [Sov. Phys. JETP 69, 805 (1989)].ADSGoogle Scholar
  6. 6.
    F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low Temp. Phys. 110, 841 (1998).CrossRefGoogle Scholar
  7. 7.
    J. A. Melsen, P. W. Brower, K. M. Frahm, and C. W. J. Beenakker, Europhys. Lett. 35, 7 (1996); Phys. Scr. 69, 223 (1997).CrossRefADSGoogle Scholar
  8. 8.
    S. Pilgram, W. Belzig, and C. Bruder, Phys. Rev. B 62, 12462 (2000).Google Scholar
  9. 9.
    G. Eilenberger, Z. Phys. 214, 195 (1968).Google Scholar
  10. 10.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Éksp. Teor. Fiz. 55, 2262 (1968) [Sov. Phys. JETP 28, 1200 (1969)].Google Scholar
  11. 11.
    K. Usadel, Phys. Rev. Lett. 25, 507 (1970).CrossRefADSGoogle Scholar
  12. 12.
    C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994); 177, 727 (1996).CrossRefMathSciNetGoogle Scholar
  13. 13.
    M. L. Mehta, Random Matrices (Academic, New York, 1991).Google Scholar
  14. 14.
    K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, New York, 1997).Google Scholar
  15. 15.
    A. Altland, B. D. Simons, and D. Taras-Semchuk, Pis’ma Zh. Éksp. Teor. Fiz. 67, 21 (1997) [JETP Lett. 67, 22 (1997)]; Adv. Phys. 49, 321 (2000).Google Scholar
  16. 16.
    B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 51, 5480 (1995).CrossRefADSGoogle Scholar
  17. 17.
    P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigel’man, Zh. Éksp. Teor. Fiz. (in press) [JETP (in press)].Google Scholar
  18. 18.
    W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett. 87, 067006 (2001).Google Scholar
  19. 19.
    M. Yu. Kuprianov and V. F. Lukichev, Zh. Éksp. Teor. Fiz. 94(6), 139 (1988) [Sov. Phys. JETP 67, 1163 (1988)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • P. M. Ostrovsky
    • 1
  • M. A. Skvortsov
    • 1
  • M. V. Feigel’man
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations