Optics and Spectroscopy

, Volume 92, Issue 5, pp 732–738 | Cite as

Coherent control of the quasi-elastic resonant secondary emission: Semiconductor quantum dots

  • A. V. Fedorov
  • A. V. Baranov
  • Y. Masumoto
Physical and Quantum Optics

Abstract

A detailed theoretical study of the time-integrated signal of spontaneous quasi-elastic secondary emission excited by a pair of phase-locked pulses has shown that coherent control is a promising method for measuring the total dephasing rate of a resonant optical transition. This method may be used to study both the homogeneously and inhomogeneously broadened systems, which is highly important in studies of semiconductor quantum dots. Analysis of components of the secondary emission in the framework of the developed theory has allowed us to find a physically justified criterion for separating the scattering and luminescence signals. The role of spectral filtering of the measured signal in determination of the phase and energy relaxation parameters is elucidated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Murray, C. Kagan, and M. Bawendi, Science 270, 1335 (1995).CrossRefADSGoogle Scholar
  2. 2.
    M. M. Salour and C. Cohen-Tannoudji, Phys. Rev. Lett. 38, 757 (1977).CrossRefADSGoogle Scholar
  3. 3.
    A. P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).CrossRefADSGoogle Scholar
  4. 4.
    M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegner, Phys. Rev. Lett. 80, 1992 (1998).CrossRefADSGoogle Scholar
  5. 5.
    X. Marie, P. Le Jeune, T. Amand, et al., Phys. Rev. Lett. 79, 3222 (1997).CrossRefADSGoogle Scholar
  6. 6.
    M. Woerner and J. Shah, Phys. Rev. Lett. 81, 4208 (1998).CrossRefADSGoogle Scholar
  7. 7.
    M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, Phys. Rev. Lett. 78, 3205 (1997).CrossRefADSGoogle Scholar
  8. 8.
    N. H. Bonadeo, J. Erland, D. Gammon, et al., Science 282, 1473 (1998).CrossRefGoogle Scholar
  9. 9.
    S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).CrossRefADSGoogle Scholar
  10. 10.
    K. Blum, Density Matrix. Theory and Applications (Plenum, New York, 1981).Google Scholar
  11. 11.
    U. Fano, Lectures on the Many-Body Problem (Academic, New York, 1964), Vol. 2.Google Scholar
  12. 12.
    W. Heitler, The Quantum Theory of Radiation (Clarendon, Oxford, 1954).MATHGoogle Scholar
  13. 13.
    T. K. Yee and T. K. Gustafson, Phys. Rev. A 18, 1597 (1978).CrossRefADSGoogle Scholar
  14. 14.
    J. S. Melinger and A. C. Albrecht, J. Chem. Phys. 84, 1247 (1986).CrossRefADSGoogle Scholar
  15. 15.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, Oxford, 1995).Google Scholar
  16. 16.
    Y. R. Shen, Phys. Rev. B 9, 662 (1974).ADSGoogle Scholar
  17. 17.
    É. A. Manykin and V. V. Samartsev, Optical Echo Spectroscopy (Nauka, Moscow, 1984).Google Scholar
  18. 18.
    A. V. Baranov, V. Davydov, A. V. Fedorov, et al., Phys. Status Solidi B 224, 461 (2001).CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • A. V. Fedorov
    • 1
  • A. V. Baranov
    • 1
  • Y. Masumoto
    • 2
  1. 1.All-Russia Research Center “Vavilov State Optical Institute”St. PetersburgRussia
  2. 2.Institute of PhysicsUniversity of TsukubaJapan

Personalised recommendations