Technical Physics

, Volume 47, Issue 5, pp 561–568 | Cite as

Fast crystallization of structural steel during laser processing of the surface

  • P. K. Galenko
  • E. V. Kharanzhevskii
  • D. A. Danilov


The size, shape, and structure of the molten zone appearing on the surface of Fe-C multicomponent alloy upon laser recrystallization are studied. The laser scan rate varies between 0.01 to 0.167 m/s. A set of equations for the temperature and concentration fields is derived within a model of locally nonequilibrium crystallization. The use of the hypothesis for marginal stability, as applied to crystal growth, makes it possible to find the characteristic size of the crystal structure. The mathematical simulation of recrystallization upon laser processing is in good agreement with experimental data. The results of the simulation can be used for predicting the mechanical properties in the molten zone as a function of the energy parameters of the radiation and thermophysical properties of the alloy.


Radiation Experimental Data Mechanical Property Crystallization Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Boettinger, D. Shechtman, R. J. Schaefer, and F. S. Biancaniello, Metall. Trans. A 15, 55 (1984).Google Scholar
  2. 2.
    S. C. Gill and W. Kurz, Acta Metall. Mater. 41, 3563 (1993).Google Scholar
  3. 3.
    Laser Technique and Technology, Vol. 6: Foundations of Laser Thermostrengthening of Alloys: Textbook for Institutes of Higher Education, Ed. by A. G. Grigor’yants and A. N. Safonov (Vysshaya Shkola, Moscow, 1988).Google Scholar
  4. 4.
    V. D. Sadovskii et al., Laser Heating and Structure of Steel: Atlas of Microstructures (Ural. Otd. Akad. Nauk SSSR, Sverdlovsk, 1989).Google Scholar
  5. 5.
    W. J. Boettinger, S. R. Coriell, et al., Acta Mater. 48, 43 (2000).Google Scholar
  6. 6.
    W. Kurz and D. J. Fisher, Fundamentals of Solidification (Trans Tech Publications, Aedermannsdorf, 1992, 3rd ed.).Google Scholar
  7. 7.
    R. Trivedi and W. Kurz, Acta Metall. 34, 1663 (1986).Google Scholar
  8. 8.
    Q. Y. Pan, W. D. Huang, et al., J. Cryst. Growth 181, 109 (1997).Google Scholar
  9. 9.
    M. S. F. Lima and H. Goldenstein, J. Cryst. Growth 208, 709 (2000).CrossRefGoogle Scholar
  10. 10.
    J. E. Gould, Weld. J. (Miami) 73, 91–s (1994).ADSGoogle Scholar
  11. 11.
    P. K. Galenko, Kristallografiya 38, 238 (1993) [Crystallogr. Rep. 38, 836 (1993)].Google Scholar
  12. 12.
    P. Galenko and S. Sobolev, Phys. Rev. E 55, 343 (1997).ADSGoogle Scholar
  13. 13.
    P. K. Galenko, M. D. Krivilev, V. I. Lad’yanov, and M. V. Osetrov, Kristallografiya 46, 354 (2001) [Crystallogr. Rep. 46, 310 (2001)]; Available from VINITI, No. 827-V00 (1999).Google Scholar
  14. 14.
    P. K. Galenko and M. D. Krivilyov, Modell. Simul. Mater. Sci. Eng. 8, 81 (2000).ADSGoogle Scholar
  15. 15.
    P. K. Galenko and D. A. Danilov, Phys. Lett. A 235, 271 (1997).CrossRefADSGoogle Scholar
  16. 16.
    P. K. Galenko and D. A. Danilov, J. Cryst. Growth 197, 992 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Gremaud, M. Carrard, and W. Kurz, Acta Metall. Mater. 38, 2587 (1990).Google Scholar
  18. 18.
    P. K. Galenko and V. A. Zhuravlev, Physics of Dendrites (World Sci., Singapore, 1994).Google Scholar
  19. 19.
    J. Lipton, W. Kurz, and R. Trivedi, Acta Metall. 35, 957 (1987).Google Scholar
  20. 20.
    W. J. Boettinger, S. R. Coriell, and R. Trivedi, Rapid Solidification Processing: Principles and Technologies IV, Ed. by R. Mehrabian and P. A. Parrish (Claitor’s, Baton Rouge, 1988), p. 13.Google Scholar
  21. 21.
    J. S. Langer and H. Müller-Krumbhaar, Acta Metall. 26, 1681 (1978).Google Scholar
  22. 22.
    S. L. Sobolev, Phys. Lett. A 199, 383 (1995).CrossRefADSGoogle Scholar
  23. 23.
    P. Galenko, Phys. Rev. B 65, 144103 (2002).Google Scholar
  24. 24.
    E. O. Hall, Proc. Phys. Soc. London, Sect. B 381, 64 (1951).Google Scholar
  25. 25.
    N. I. Petch, J. Iron Steel Inst., London 25, 174 (1953).Google Scholar
  26. 26.
    D. Tabor, The Hardness of Metals (Oxford Univ. Press, London, 1951).Google Scholar
  27. 27.
    A. I. Gusev, Usp. Fiz. Nauk 168, 55 (1998) [Phys. Usp. 41, 49 (1998)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • P. K. Galenko
    • 1
    • 2
  • E. V. Kharanzhevskii
    • 1
  • D. A. Danilov
    • 1
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.German Aerospace CenterInstitute for Space SimulationCologneGermany

Personalised recommendations