Advertisement

Doklady Physics

, Volume 47, Issue 4, pp 316–318 | Cite as

Generalized Euler’s equations describing the motion of a rigid body with a fixed point in ℝn

  • D. V. Georgievskii
  • M. V. Shamolin
Mechanics
  • 23 Downloads

Keywords

Rigid Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Markeev, Theoretical Mechanics (CheRo, Moscow, 1999).Google Scholar
  2. 2.
    D. V. Georgievskii and M. V. Shamolin, Dokl. Akad. Nauk 380, 47 (2001) [Dokl. Phys. 46, 663 (2001)].MathSciNetGoogle Scholar
  3. 3.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk SSSR 287, 1105 (1986) [Sov. Phys. Dokl. 31, 309 (1986)].ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk SSSR 272, 1364 (1983) [Sov. Phys. Dokl. 28, 858 (1983)].ADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    M. V. Shamolin, Dokl. Akad. Nauk 375, 343 (2000) [Dokl. Phys. 45, 632 (2000)].MathSciNetGoogle Scholar
  6. 6.
    V. V. Trofimov and A. T. Fomenko, Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat., Noveish. Dostizh. 29, 3 (1986).MathSciNetGoogle Scholar
  7. 7.
    B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry—Methods and Applications (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984, 1985, 1990), Parts 1–3.Google Scholar
  8. 8.
    A. P. Veselov, Dokl. Akad. Nauk SSSR 270, 1298 (1983).zbMATHMathSciNetGoogle Scholar
  9. 9.
    S. V. Manakov, Funkts. Analiz. Ego Prilozh. 10, 93 (1976).zbMATHMathSciNetGoogle Scholar
  10. 10.
    M. A. Ol’shanetskii and A. M. Perelomov, Funkts. Analiz. Ego Prilozh. 11, 75 (1977).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • D. V. Georgievskii
    • 1
  • M. V. Shamolin
    • 1
  1. 1.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations