Advertisement

Critical current in SFIFS junctions

  • A. A. Golubov
  • M. Yu. Kupriyanov
  • Ya. V. Fominov
Condensed Matter

Abstract

A quantitative theory of the Josephson effect in SFIFS junctions (S denotes bulk superconductor, F is metallic ferromagnet, and I is insulating barrier) is presented in the dirty limit. A fully self-consistent numerical procedure is employed to solve the Usadel equations for arbitrary values of the F-layer thicknesses, magnetizations, and interface parameters. In the case of antiparallel ferromagnet magnetizations, the effect of critical current Ic enhancement by the exchange energy H is observed, while in the case of parallel magnetizations the junction exhibits a transition to the π state. In the limit of thin F layers, we study these peculiarities of the critical current analytically and explain them qualitatively; the scenario of the 0-πtransition in our case differs from those studied before. The effect of switching between 0 and π states by changing the mutual orientation of F layers is demonstrated.

PACS numbers

74.50.+r 74.80.Dm 74.60.Jg 75.30.Et 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Pis’ma Zh. Éksp. Teor. Fiz. 25, 314 (1977) [JETP Lett. 25, 290 (1977)].Google Scholar
  2. 2.
    A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, Pis’ma Zh. Éksp. Teor. Fiz. 35, 147 (1982) [JETP Lett. 35, 178 (1982)].Google Scholar
  3. 3.
    A. I. Buzdin and M. Yu. Kupriyanov, Pis’ma Zh. Éksp. Teor. Fiz. 53, 308 (1991) [JETP Lett. 53, 321 (1991)].Google Scholar
  4. 4.
    A. I. Buzdin, B. Vujičić and M. Yu. Kupriyanov, Zh. Éksp. Teor. Fiz. 101, 231 (1992) [Sov. Phys. JETP 74, 124 (1992)].ADSGoogle Scholar
  5. 5.
    E. A. Koshina and V. N. Krivoruchko, Pis’ma Zh. Éksp. Teor. Fiz. 71, 182 (2000) [JETP Lett. 71, 123 (2000)].Google Scholar
  6. 6.
    L. Dobrosavljević-Grujić, R. Zikić, and Z. Radović, Physica C (Amsterdam) 331, 254 (2000).ADSGoogle Scholar
  7. 7.
    N. M. Chtchelkatchev, W. Belzig, Yu. V. Nazarov, and C. Bruder, Pis’ma Zh. Éksp. Teor. Fiz. 74, 357 (2001) [JETP Lett. 74, 323 (2001)].Google Scholar
  8. 8.
    Yu. S. Barash and I. V. Bobkova, cond-mat/0108200.Google Scholar
  9. 9.
    V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, et al., Phys. Rev. Lett. 86, 2427 (2001); V. V. Ryazanov, V. A. Oboznov, A. V. Veretennikov, et al., Usp. Fiz. Nauk, Suppl. 171, 81 (2001).CrossRefADSGoogle Scholar
  10. 10.
    F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86, 3140 (2001).ADSGoogle Scholar
  11. 11.
    V. N. Krivoruchko and E. A. Koshina, Phys. Rev. B 63, 224 515 (2001); 64, 172 511 (2001).Google Scholar
  12. 13.
    I. O. Kulik and A. N. Omel’yanchuk, Fiz. Nizk. Temp. 3, 945 (1977) [Sov. J. Low Temp. Phys. 3, 459 (1977)].Google Scholar
  13. 14.
    K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).CrossRefADSGoogle Scholar
  14. 15.
    K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).CrossRefADSGoogle Scholar
  15. 16.
    M. Yu. Kupriyanov and V. F. Lukichev, Zh. Éksp. Teor. Fiz. 94, 139 (1988) [Sov. Phys. JETP 67, 1163 (1988)].Google Scholar
  16. 17.
    E. A. Koshina and V. N. Krivoruchko, Fiz. Nizk. Temp. 26, 157 (2000) [Low Temp. Phys. 26, 115 (2000)].Google Scholar
  17. 18.
    A. A. Golubov and M. Yu. Kupriyanov, Zh. Éksp. Teor. Fiz. 96, 1420 (1989) [Sov. Phys. JETP 69, 805 (1989)].ADSGoogle Scholar
  18. 19.
    A. A. Golubov, M. Yu. Kupriyanov, and Ya. V. Fominov, in preparation.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • A. A. Golubov
    • 1
  • M. Yu. Kupriyanov
    • 2
  • Ya. V. Fominov
    • 3
    • 2
  1. 1.Department of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Nuclear Physics InstituteMoscow State UniversityMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations