Optics and Spectroscopy

, Volume 92, Issue 4, pp 601–608

Yb-and Er-Doped single crystals of double tungstates NaGd(WO4)2, NaLa(WO4)2, and NaBi(WO4)2 as active media for lasers operating in the 1.0 and 1.5 µm ranges

  • K. A. Subbotin
  • E. V. Zharikov
  • V. A. Smirnov
Physical and Quantum Optics


Ytterbium-and erbium-doped single crystals of scheelite-like double tungstates NaGd(WO4)2, NaLa(WO4)2, and NaBi(WO4)2 and scheelite CaWO4 have been grown by the Czochralski method. The dopant concentrations in crystals are measured, and the coefficients of dopant distribution are determined to range from 0.45 to 3. The lifetimes of the Er3+ states 4I11/2 and 4I13/2 and the Yb3+ state 2F5/2 are measured, and the absorption and luminescence spectra of the crystals are studied in the vicinity of 1.0 and 1.5 µm. The data obtained are compared with the corresponding characteristics of other crystals. The possible use of the crystals studied as active media of solid-state lasers operating in the range 1.0 and 1.5 µm is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kaminskii, Ann. Phys. (Paris) 16, 639 (1991).ADSGoogle Scholar
  2. 2.
    V. Kuleshov, A. A. Lagatsky, and V. G. Shcherbitsky, Appl. Phys. B 64, 409 (1997).CrossRefADSGoogle Scholar
  3. 3.
    S. Rotyliano, V. Mikhailov, S. Schulz, and A. Cable, in Technical Digest of the Conference on Advanced Solid-State Lasers, February 13–16, 2000, Davos, Switzerland, 2000, p. 27.Google Scholar
  4. 4.
    C. Tu, Z. Luo, G. Chen, and T. Zhao, J. Cryst. Growth 152, 235 (1995).CrossRefADSGoogle Scholar
  5. 5.
    A. G. Betekhtin, Mineralogy (Gosgeolizdat, Moscow, 1950).Google Scholar
  6. 6.
    A. W. Sleight, Acta Crystallogr. B 28, 2899 (1972).CrossRefGoogle Scholar
  7. 7.
    M. V. Mokhosoev, V. I. Krivobok, and S. M. Aleikina, Izv. Akad. Nauk SSSR, Neorg. Mater. 3, 1657 (1967).Google Scholar
  8. 8.
    E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, Zh. Neorg. Khim. 16, 1713 (1971).Google Scholar
  9. 9.
    N. Faure, C. Borel, M. Couchaud, et al., Appl. Phys. B 63, 593 (1996).ADSGoogle Scholar
  10. 10.
    V. Volkov and C. Zaldo, J. Cryst. Growth 206, 60 (1999).CrossRefGoogle Scholar
  11. 11.
    P. V. Klevtsov, V. A. Vinokurov, and R. F. Klevtsova, Kristallografiya 18, 1192 (1973) [Sov. Phys. Crystallogr. 18, 749 (1973)].Google Scholar
  12. 12.
    J. R. Thornton, W. D. Fountain, G. W. Flint, and T. G. Grow, Appl. Opt. 8, 1087 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    T. T. Basiev, Yu. K. Voron’ko, E. V. Zharikov, et al., Kratk. Soobshch. Fiz., No. 8, 9 (1979).Google Scholar
  14. 14.
    T. T. Basiev, Yu. K. Voron’ko, V. V. Osiko, et al., Zh. Éksp. Teor. Fiz. 70, 1225 (1976) [Sov. Phys. JETP 43, 637 (1976)].Google Scholar
  15. 15.
    P. Laporta, S. Taccheo, S. Longhi, et al., Opt. Mater. 11, 269 (1999).CrossRefGoogle Scholar
  16. 16.
    C. Pujol, M. Aguiló, F. Díaz, and C. Zaldo, Opt. Mater. 13, 33 (1999).CrossRefADSGoogle Scholar
  17. 17.
    G. Métrat, M. Boudeulle, N. Muhlstein, et al., J. Cryst. Growth 197, 883 (1999).CrossRefGoogle Scholar
  18. 18.
    L. D. DeLoach, S. A. Payne, L. L. Chase, et al., IEEE J. Quantum Electron. QE-29, 1179 (1993).CrossRefADSGoogle Scholar
  19. 19.
    J. Dong, P. Deng, and J. Xu, Opt. Commun. 170, 255 (1999).CrossRefADSGoogle Scholar
  20. 20.
    P. Yang, P. Deng, J. Xu, and Z. Yin, J. Cryst. Growth 216, 348 (2000).CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • K. A. Subbotin
    • 1
  • E. V. Zharikov
    • 1
    • 2
  • V. A. Smirnov
    • 1
  1. 1.Laser Materials and Technology Research Center, Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical EngineeringMoscowRussia

Personalised recommendations