Physics of Atomic Nuclei

, Volume 65, Issue 4, pp 583–592 | Cite as

Alpha clustering in 4n nuclei from 4He to 40Ca

  • G. S. Anagnostatos
  • C. Politis
  • C. Syros
  • P. K. Kakanis
  • J. Giapitzakis
Article

Abstract

The α clustering in nuclei from 4He to 40Ca has been presented on a systematic footing which depicts the similarities from nucleus to nucleus. Here, the isomorphic shell model has been employed, which is a hybrid between the conventional shell model and liquid drop model in conjunction with the nucleon finite size and which, in addition, uses no adjustable parameters. In the framework of the model an α-like particle is defined as four close-by nucleons (two neutrons and two protons) in relative angular momentum zero. Thus, up to 40Ca nine such α-like particles and two deuterons are formed whose average positions are well specified in the model. Hence, each time an α-like particle is formed (following the aforementioned definition), this could have an average position only at one of the above nine available positions for such particles. Any 4n nucleus arranges its nα-like particles in the same way and any such arrangement corresponds to the ground state or to an excited state of this nucleus and serves as the band head of a rotational band. For 20Ne nine such bands have been found, while for 12C and 28Si two and five bands, respectively. The linear α-chain for 12C and persisting α-planar structures for heavier nuclei appear in a natural way in the framework of the model and are supported by many observables. The real novelty of this presentation is the fact that the axis of rotation and the number of rotating nucleons inside the same rotational band may change in such a way that the relevant moment of inertia increases monotonically in steps forming for each step a new branch of the band. Thus, several such bands have the same band head, a fact which closely resembles the phenomenon of superdeformation. This phenomenon here is the result of existence of several axes of symmetry and of several axes of rotation which, by changing the axis of rotation, permit the moment of inertia to increase up to the solid body limit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wheeler, Phys. Rev. 52, 1083 (1937).ADSMATHGoogle Scholar
  2. 2.
    W. Wefelmeier, Z. Phys. 107, 332 (1937).Google Scholar
  3. 3.
    D. Dennison, Phys. Rev. 57, 454 (1940).CrossRefADSGoogle Scholar
  4. 4.
    D. Dennison, Phys. Rev. 96, 378 (1954).CrossRefADSGoogle Scholar
  5. 5.
    S. L. Kameny, Phys. Rev. 103, 358 (1956).CrossRefADSGoogle Scholar
  6. 6.
    D. M. Brink, in The Alpha-Particle Model of Light Nuclei, Proceedings of the International School of Physics “Enrico Fermi,” Course XXXVI, Ed. by C. Bloch (Academic, New York, 1966).Google Scholar
  7. 7.
    D. M. Brink, H. Friedrich, A. Weiguny, et al., Phys. Lett. B 33B, 143 (1970).ADSGoogle Scholar
  8. 8.
    D. Robson, Phys. Rev. Lett. 42, 876 (1979).CrossRefADSGoogle Scholar
  9. 9.
    D. Robson, Phys. Rev. C 25, 1108 (1982).CrossRefADSGoogle Scholar
  10. 10.
    W. Bauhoff, H. Schultheis, and R. Schultheis, Phys. Lett. B 95B, 5 (1980); 106B, 278 (1981); Phys. Rev. C 22, 861 (1980); 29, 1046 (1984).ADSGoogle Scholar
  11. 11.
    S. Marsh and W. D. M. Rae, Phys. Lett. B 180, 185 (1986).ADSGoogle Scholar
  12. 12.
    W. D. M. Rae and A. C. Merchant, Mod. Phys. Lett. A 8, 2435 (1993); J. Zhang and W. D. M. Rae, Nucl. Phys. A 564, 252 (1993).ADSGoogle Scholar
  13. 13.
    A. C. Merchant and W. D. M. Rae, Nucl. Phys. A 549, 431 (1992).ADSGoogle Scholar
  14. 14.
    W. D. M. Rae, A. C. Merchant, and J. Zhang, Phys. Lett. B 321, 1 (1994).ADSGoogle Scholar
  15. 15.
    G. S. Anagnostatos, Phys. Rev. C 51, 152 (1995).CrossRefADSGoogle Scholar
  16. 16.
    P. K. Kakanis and G. S. Anagnostatos, Phys. Rev. C 54, 2996 (1996).CrossRefADSGoogle Scholar
  17. 17.
    G. S. Anagnostatos, P. Ginis, and J. Giapitzakis, Phys. Rev. C 58, 3305 (1998).ADSGoogle Scholar
  18. 18.
    G. S. Anagnostatos, Int. J. Theor. Phys. 24, 579 (1985).CrossRefGoogle Scholar
  19. 19.
    G. S. Anagnostatos, Can. J. Phys. 70, 361 (1992).ADSGoogle Scholar
  20. 20.
    G. S. Anagnostatos and C. N. Panos, Phys. Rev. C 26, 260 (1982).CrossRefADSGoogle Scholar
  21. 21.
    C. N. Panos, G. S. Anagnostatos, J. Phys. G 8, 1651 (1982).CrossRefADSGoogle Scholar
  22. 22.
    W. F. Hornyak, Nuclear Structure (Academic, New York, 1975), p. 240.Google Scholar
  23. 23.
    J. Leech, Math. Gazelle 41, 81 (1957).MATHMathSciNetGoogle Scholar
  24. 24.
    P. J. Twin, B. M. Nyako, A. H. Nelson, et al., Phys. Rev. Lett. 56, 2680 (1986).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • G. S. Anagnostatos
    • 3
  • C. Politis
    • 1
    • 3
  • C. Syros
    • 1
    • 3
  • P. K. Kakanis
    • 2
    • 3
  • J. Giapitzakis
    • 1
    • 3
  1. 1.School of EngineeringUniversity of PatrasPatrasGreece
  2. 2.Greek Atomic Energy CommissionAttikiGreece
  3. 3.Institute of Nuclear PhysicsNational Center for Scientific Research “Demokritos,”Aghia Paraskevi, AttikiGreece

Personalised recommendations