Entanglement of atomic states upon collective radiative decay

  • A. M. Basharov
Atoms, Spectra, Radiations


It is shown in the Markovian approximation that the relaxation of two atoms noninteracting with each other in the field of a common thermostat results in the entanglement of atomic states. With time, this entanglement either vanishes or takes a stationary value depending on the initial conditions.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ya. Kilin, Usp. Fiz. Nauk 169, 507 (1999).Google Scholar
  2. 2.
    I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Usp. Fiz. Nauk 171, 625 (2001).Google Scholar
  3. 3.
    D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1995).Google Scholar
  4. 4.
    G. K. Brennen et al., Phys. Rev. Lett. 82, 1060 (1999).CrossRefADSGoogle Scholar
  5. 5.
    A. Beige et al., J. Mod. Opt. 47, 401 (2000).ADSMathSciNetGoogle Scholar
  6. 6.
    I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Fortschr. Phys. 48, 637 (2000).CrossRefADSGoogle Scholar
  7. 7.
    L. M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev. Lett. 85, 5643 (2000).ADSGoogle Scholar
  8. 8.
    B. Julsgaard, A. Kozhekin, and E. S. Polzik, quant-ph/0106057 (2001).Google Scholar
  9. 9.
    C. P. Yang and G. C. Guo, Physica A (Amsterdam) 273, 352 (1999).ADSGoogle Scholar
  10. 10.
    G. C. Guo and C. P. Yang, Physica A (Amsterdam) 260, 173 (1998).Google Scholar
  11. 11.
    V. N. Gorbachev, A. I. Zhiliba, and A. I. Trubilko, Izv. Akad. Nauk, Ser. Fiz. 66, 345 (2002).Google Scholar
  12. 12.
    M. B. Menskii, Quantum Measurings and Decoherention. Models and Phenomenology (Fizmatlit, Moscow, 2001).Google Scholar
  13. 13.
    A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics (Nauka, Moscow, 1988).Google Scholar
  14. 14.
    M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, et al., Superradiance: Multiatomic Coherent Emission (Inst. of Physics Publ., Bristol, 1996).Google Scholar
  15. 15.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996).ADSMATHMathSciNetGoogle Scholar
  16. 16.
    M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, quant-ph/0103063 (2001).Google Scholar
  18. 18.
    C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991), Chap. 5.Google Scholar
  19. 19.
    A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer, Dordrecht, 1999), Appendix 1.Google Scholar
  20. 20.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    C. Macchiavello and G. M. Palma, quant-ph/0107052 (2001).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • A. M. Basharov

There are no affiliations available

Personalised recommendations