High-energy optical Schrödinger solitons

  • V. N. Serkin
  • T. L. Belyaeva
Nonlinear Dynamics

Abstract

The conditions for the existence of a Lax pair were determined and exact analytic solutions to the nonlinear evolution equations of the Schrödinger type with complex and nonuniform potentials were found. In particular, these solutions provide a basis for the soliton management concept in applied problems and solve the problems of optimal energy accumulation by a Schrödinger soliton in an active medium and soliton amplification in optical fiber communication lines and soliton lasers.

PACS numbers

42.65.Tg 05.45.Yv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Mollenauer, R. G. Stolen, and J. R. Gordon, Phys. Rev. Lett. 45, 1095 (1980).CrossRefADSGoogle Scholar
  2. 2.
    Massive WDM and TDM Soliton Transmission Systems: A ROSC Symposium, Ed. by Akira Hasegawa (Kluwer, Boston, 2000).Google Scholar
  3. 3.
    M. Nakazawa, H. Kubota, K. Suzuki, et al., Chaos 10, 486 (2000).CrossRefADSGoogle Scholar
  4. 4.
    J. A. Krumhansl, Phys. Today 44(3), 33 (1991).Google Scholar
  5. 5.
    V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].Google Scholar
  6. 6.
    V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz. 64, 1627 (1973) [Sov. Phys. JETP 37, 823 (1973)].Google Scholar
  7. 7.
    V. I. Karpman and E. M. Maslov, Zh. Éksp. Teor. Fiz. 75, 504 (1978) [Sov. Phys. JETP 48, 252 (1978)].Google Scholar
  8. 8.
    V. I. Karpman and V. V. Solov’ev, Physica D (Amsterdam) 3, 483 (1981).ADSMathSciNetGoogle Scholar
  9. 9.
    Optical Solitons-Theory and Experiment, Ed. J.R. Taylor (Cambridge Univ. Press, Cambridge, 1992).Google Scholar
  10. 10.
    V. V. Afanasjev, V. N. Serkin, and V. A. Vysloukh, Sov. Lightwave Commun. 2, 35 (1992).Google Scholar
  11. 11.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 53, 249 (1974).MathSciNetGoogle Scholar
  12. 12.
    P. D. Lax, Commun. Pure Appl. Math. 21, 467 (1968).MATHMathSciNetGoogle Scholar
  13. 13.
    H. H. Chen and C. S. Liu, Phys. Rev. Lett. 37, 693 (1976).ADSMathSciNetGoogle Scholar
  14. 14.
    V. N. Serkin and A. Hasegawa, Phys. Rev. Lett. 85, 4502 (2000).CrossRefADSGoogle Scholar
  15. 15.
    V. N. Serkin and A. Hasegawa, Pis’ma Zh. Éksp. Teor. Fiz. 72, 125 (2000) [JETP Lett. 72, 89 (2000)].Google Scholar
  16. 16.
    V. E. Zakharov and S. V. Manakov, Pis’ma Zh. Éksp. Teor. Fiz. 70, 573 (1999) [JETP Lett. 70, 578 (1999)].Google Scholar
  17. 17.
    V. N. Serkin, É. M. Shmidt, T. L. Belyaeva, and S. N. Khotyaintsev, Dokl. Akad. Nauk 359, 760 (1998) [Dokl. Phys. 43, 206 (1998)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • V. N. Serkin
    • 1
    • 2
  • T. L. Belyaeva
    • 2
    • 3
  1. 1.Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Benemérita Universidad Autonoma de Puebla, Instituto de CienciasPueblaMexico
  3. 3.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations