Physics of the Solid State

, Volume 44, Issue 2, pp 199–203 | Cite as

Electrical resistivity of microinhomogeneous PdMnxFe1−x alloys

  • N. I. Kourov
  • M. A. Korotin
  • N. V. Volkova
Metals and Superconductors


The electronic band-structure calculations of the PdFe ferromagnet and the PdMn antiferromagnet performed in this work permit one to conclude that the specific features of the electrical resistivity observed in the ternary PdMnxFe1−x alloy system [the deviation from the Nordheim-Kurnakov rule ρ0(x)∼x(1−x), which is accompanied by a high maximum of residual resistivity (not typical of metals) ρ 0 m ∼220 µΩ cm at xC∼0.8 and a negative temperature resistivity coefficient in the interval 0.5≤x≤1] are due to the microinhomogeneous (multiphase) state of the alloys and a variation in the band-gap parameter d spectrum caused by antiferromagnetic ordering of a PdMn-type phase.


Spectroscopy State Physics Electrical Resistivity Alloy System High Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Kourov, Yu. G. Karpov, N. V. Volkov, and L. N. Tyulenev, Fiz. Met. Metalloved. 84(6), 86 (1997).Google Scholar
  2. 2.
    J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).Google Scholar
  3. 3.
    L. N. Tyulenev, N. V. Volkova, I. I. Piratinskaya, et al., Fiz. Met. Metalloved. 83(1), 75 (1997).Google Scholar
  4. 4.
    N. V. Volkova, N. M. Kleinerman, N. I. Kourov, et al., Fiz. Met. Metalloved. 89(1), 39 (2000).Google Scholar
  5. 5.
    N. I. Kourov, V. A. Kazantsev, L. N. Tyulenev, and N. V. Volkova, Fiz. Met. Metalloved. 89(5), 24 (2000).Google Scholar
  6. 6.
    V. I. Anisimov and M. A. Korotin, Fiz. Met. Metalloved. 68(3), 474 (1989).Google Scholar
  7. 7.
    E. Kre’n and J. So’lyom, Phys. Lett. 22(3), 273 (1966).ADSGoogle Scholar
  8. 8.
    Yu. P. Irkhin, Fiz. Met. Metalloved. 6(4), 586 (1957).Google Scholar
  9. 9.
    A. I. Lichtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).ADSGoogle Scholar
  10. 10.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1975; Pergamon, Oxford, 1979).Google Scholar
  11. 11.
    V. I. Odolevskii, Zh. Tekh. Fiz. 21(6), 667 (1951).Google Scholar
  12. 12.
    B. I. Shklovskii and A. L. Éfros, Usp. Fiz. Nauk 117(3), 401 (1975) [Sov. Phys. Usp. 18, 845 (1975)].Google Scholar
  13. 13.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973); in Theory and Properties of Disordered Materials (Mir, Moscow, 1977).CrossRefADSGoogle Scholar
  14. 14.
    G. E. Pike and C. H. Seager, J. Appl. Phys. 48(12), 5152 (1977).CrossRefADSGoogle Scholar
  15. 15.
    Ping Sheng, Phys. Rev. B 21(6), 2180 (1980).Google Scholar
  16. 16.
    D. Hudson, Statistics. Lectures on Elementary Statistics and Probability (Geneva, 1964; Mir, Moscow, 1970).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • N. I. Kourov
    • 1
  • M. A. Korotin
    • 1
  • N. V. Volkova
    • 1
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations