Advertisement

Journal of Experimental and Theoretical Physics

, Volume 94, Issue 1, pp 119–122 | Cite as

Magnetic resonance in dilute quasi-one-dimensional antiferromagnet CsNi1−xMgxBr3

  • L. A. Prozorova
  • G. V. Pupkov
  • S. S. Sosin
  • S. V. Petrov
Solids Structure
  • 25 Downloads

Abstract

The effect of alloying with nonmagnetic Mg2+ ions on the low-frequency branch of resonance of a noncollinear quasi-one-dimensional CsNiBr3 antiferromagnet is investigated experimentally. It is found that a weak dilution (x=2 to 4%) leads to a considerable (up to 15%) reduction of the resonant gap and of the spin-flop field. The results agree with the theory of Korenblit and Schender, according to which the small parameter of perturbation of the initial system is \(x\sqrt {J/J'}\) rather than the impurity concentration x; i.e., a quasi-one-dimensional amplification coefficient exists, which is equal in this case to approximately six.

Keywords

Spectroscopy State Physics Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. N. Bulaevskii, Fiz. Tverd. Tela (Leningrad) 11, 1132 (1969) [Sov. Phys. Solid State 11, 921 (1969)].Google Scholar
  2. 2.
    I. Ya. Korenblit and E. F. Schender, Phys. Rev. B 48, 9478 (1993).CrossRefADSGoogle Scholar
  3. 3.
    C. Dupas and J. P. Renard, Phys. Rev. B 18, 401 (1978).CrossRefADSGoogle Scholar
  4. 4.
    D. Visser, A. Harrison, and D. J. McIntyre, J. Phys. (Paris) 49, C8–1255 (1988).Google Scholar
  5. 5.
    J. Chadwick, D. H. Jones, J. A. Johnson, et al., J. Phys.: Condens. Matter 1, 6731 (1989).CrossRefADSGoogle Scholar
  6. 6.
    S. S. Sosin, I. A. Zaliznyak, L. A. Prozorova, et al., Zh. Éksp. Teor. Fiz. 112, 209 (1997) [JETP 85, 114 (1997)].Google Scholar
  7. 7.
    M. E. Zhitomirskii, O. A. Petrenko, S. V. Petrov, et al., Zh. Éksp. Teor. Fiz. 108, 343 (1995) [JETP 81, 185 (1995)].Google Scholar
  8. 8.
    R. Brenner, E. Ehrenfreund, H. Shechter, et al., J. Phys. Chem. Solids 38, 1023 (1977).Google Scholar
  9. 9.
    K. Kakurai, Physica B (Amsterdam) 180–181, 153 (1992).Google Scholar
  10. 10.
    T. Kambe, H. Tanaka, Sh. Kimura, et al., J. Phys. Soc. Jpn. 65, 1799 (1996).Google Scholar
  11. 11.
    I. A. Zaliznyak, V. I. Marchenko, S. V. Petrov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 47, 172 (1988) [JETP Lett. 47, 211 (1988)].Google Scholar
  12. 12.
    S. I. Abarzhi, M. E. Zhitomirskii, O. A. Petrenko, et al., Zh. Éksp. Teor. Fiz. 104, 3232 (1993) [JETP 77, 521 (1993)].Google Scholar
  13. 13.
    I. A. Zaliznyak, L. A. Prozorova, and S. V. Petrov, Zh. Éksp. Teor. Fiz. 97, 359 (1990) [Sov. Phys. JETP 70, 203 (1990)].Google Scholar
  14. 14.
    V. I. Marchenko and A. M. Tikhonov, Pis’ma Zh. Éksp. Teor. Fiz. 68, 844 (1998) [JETP Lett. 68, 887 (1998)].Google Scholar
  15. 15.
    A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nauk 130, 39 (1980) [Sov. Phys. Usp. 23, 21 (1980)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • L. A. Prozorova
    • 1
  • G. V. Pupkov
    • 1
  • S. S. Sosin
    • 1
  • S. V. Petrov
    • 1
  1. 1.Kapitza Institute of Physical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations