Advertisement

Optics and Spectroscopy

, Volume 92, Issue 1, pp 36–44 | Cite as

Stepwise ionization of the 2,4-dioxybenzaldehyde and 3,4-dimethoxypropiophenone vapors

  • M. E. Akopyan
  • V. I. Kleimenov
  • M. V. Kleimenov
  • A. G. Feofilov
Molecular Spectroscopy
  • 29 Downloads

Abstract

The processes of stepwise ionization of the 2,4-dioxybenzaldehyde and 3,4-dimethoxypropiophenone vapors by radiation in the range of wavelengths down to 266 nm were studied using total-current spectroscopy, mass spectrometry, and photoelectron spectroscopy. The process of two-step ionization and the resulting generation of molecular ions are dominant if the laser-radiation intensity amounts to ≈106 W/cm2. These molecular ions have appreciable (up to 1.8 eV) energy of vibrational excitation. As the laser-radiation intensity increases, progressively more pronounced fragmentation occurs owing to dissociation of molecular (and, possibly, fragmentation) ions as a result of absorption of at least a single additional photon. The processes leading to fragmentation of ions are suggested. It is found that the dissociation-ionization mechanism is important for the dimethoxypropiophenone. Dissociation with a breakage of the α bond in the carbonyl group with subsequent two-photon ionization of the fragments occurs when the S 2(1 A′) state of the ππ* type is excited.

Keywords

Photoelectron Spectrum Ionization Mechanism High Relative Intensity Stepwise Ionization Unexcited Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Akopyan, V. I. Kleimenov, and A. G. Feofilov, Khim. Vys. Énerg. 34, 140 (2000).Google Scholar
  2. 2.
    M. E. Akopyan, V. I. Kleimenov, M. V. Kleimenov, and A. G. Feofilov, Khim. Vys. Énerg. 34, 365 (2000).Google Scholar
  3. 3.
    V. S. Letokhov, Laser Photoionization Spectroscopy (Nauka, Moscow, 1987).Google Scholar
  4. 4.
    V. G. Plotnikov, Usp. Khim. 49, 327 (1980).Google Scholar
  5. 5.
    V. S. Antonov, V. S. Letokhov, and A. N. Shibanov, Zh. Éksp. Teor. Fiz. 78, 2222 (1980) [Sov. Phys. JETP 51, 1113 (1980)].ADSGoogle Scholar
  6. 6.
    V. M. Matyuk, V. K. Potapov, and A. L. Prokhoda, Khim. Vys. Énerg. 16, 3 (1982).Google Scholar
  7. 7.
    V. M. Matyuk, A. V. Polevoi, V. K. Potapov, and A. L. Prokhoda, Khim. Vys. Énerg. 16, 99 (1982).Google Scholar
  8. 8.
    A. V. Polevoi, V. M. Matyuk, G. A. Grigor’eva, and V. K. Potapov, Khim. Vys. Énerg. 18, 195 (1984).Google Scholar
  9. 9.
    A. V. Polevoi, V. M. Matyuk, and V. K. Potapov, Khim. Fiz. 6, 620 (1987).Google Scholar
  10. 10.
    S. R. Long, J. T. Meek, P. T. Harrington, and J. P. Reilly, J. Chem. Phys. 78, 3341 (1983).CrossRefADSGoogle Scholar
  11. 11.
    J. J. Yang, D. A. Gobeli, and M. A. El-Sayed, J. Phys. Chem. 89, 3426 (1985).CrossRefGoogle Scholar
  12. 12.
    E. Villa, A. Amirav, W. Chen, and E. C. Lim, Chem. Phys. Lett. 147, 43 (1988).CrossRefADSGoogle Scholar
  13. 13.
    J. W. Rabalais and R. J. Colton, J. Electron Spectrosc. Relat. Phenom. 1, 83 (1972).CrossRefGoogle Scholar
  14. 14.
    T. Kobayashi and S. Nagakura, Bull. Chem. Soc. Jpn. 47, 2563 (1974).CrossRefGoogle Scholar
  15. 15.
    G. Höjer, S. Meza, and M. E. Ruiz, Acta Chem. Scand. 27, 1860 (1973).CrossRefGoogle Scholar
  16. 16.
    M. V. Kleimenov, D. A. Sukhov, V. I. Kleimenov, and V. A. Andreev, Khim. Drev., No. 6, 49 (1992).Google Scholar
  17. 17.
    V. I. Kleimenov, A. G. Feofilov, M. E. Akopyan, et al., Khim. Vys. Énerg. 32, 291 (1998).Google Scholar
  18. 18.
    A. É. Lyubarskaya, V. I. Minkin, and M. I. Knyazhanskii, Teor. Éksp. Khim. 8, 71 (1972).Google Scholar
  19. 19.
    D. V. S. Jain and V. K. Gombar, Indian J. Chem. A 18, 375 (1979).Google Scholar
  20. 20.
    M. Berger, I. L. Goldblatt, and C. Steel, J. Am. Chem. Soc. 95, 1717 (1973).CrossRefGoogle Scholar
  21. 21.
    M. Berger and C. Steel, J. Am. Chem. Soc. 97, 4817 (1975).CrossRefGoogle Scholar
  22. 22.
    A. Douhal, F. Lahmani, and A. H. Zewail, Chem. Phys. 207, 477 (1996).CrossRefGoogle Scholar
  23. 23.
    A. L. Sobolewski and W. Domcke, Chem. Phys. 184, 115 (1994).CrossRefADSGoogle Scholar
  24. 24.
    A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys. 1, 3065 (1999).CrossRefGoogle Scholar
  25. 25.
    J. Catalan, F. Torblo, and A. U. Acuna, J. Phys. Chem. 86, 303 (1982).CrossRefGoogle Scholar
  26. 26.
    S. Nagaoka and U. Nagashima, Chem. Phys. 136, 153 (1989).CrossRefADSGoogle Scholar
  27. 27.
    Y. Hirata and E. C. Lim, J. Chem. Phys. 73, 3804 (1980).CrossRefADSGoogle Scholar
  28. 28.
    V. V. Takhistov, Organic Mass Spectrometry (Nauka, Leningrad, 1990).Google Scholar
  29. 29.
    Chemistry Webbook. NIST Standard Reference Database. http://webbook.nist.gov/chemistry/.

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • M. E. Akopyan
    • 1
  • V. I. Kleimenov
    • 1
  • M. V. Kleimenov
    • 1
  • A. G. Feofilov
    • 1
  1. 1.Institute of PhysicsSt. Petersburg State UniversityPeterhof, St. PetersburgRussia

Personalised recommendations