, Volume 35, Issue 12, pp 1378–1382 | Cite as

Ostwald ripening of quantum-dot nanostructures

  • R. D. Vengrenovich
  • Yu. V. Gudyma
  • S. V. Yarema
Low-Dimensional Systems


We suggest a scenario for the formation of quantum dots during Ostwald ripening of three-dimensional islands grown heteroepitaxially in the Stranski-Krastanow mode. We demonstrate that the size-distribution function narrows down and the variance decreases noticeably if the growth proceeds through dislocation diffusion followed by the detachment of dislocations from island bases. Plausible reasons for termination of the Ostwald ripening of the islands are discussed.


Magnetic Material Electromagnetism Plausible Reason Ostwald Ripening Dislocation Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998).Google Scholar
  2. 2.
    N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998) [Semiconductors 32, 343 (1998)].Google Scholar
  3. 3.
    V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).CrossRefADSGoogle Scholar
  4. 4.
    Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).CrossRefADSGoogle Scholar
  5. 5.
    P. Müller and R. Kern, Microsc. Microanal. Microstruct. 8, 229 (1997).CrossRefGoogle Scholar
  6. 6.
    O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1281 (2000) [Semiconductors 34, 1229 (2000)].Google Scholar
  7. 7.
    D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 (1994).Google Scholar
  8. 8.
    F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80, 984 (1998).CrossRefADSGoogle Scholar
  9. 9.
    D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, Phys. Rev. Lett. 80, 5156 (1998).CrossRefADSGoogle Scholar
  10. 10.
    J. C. Kim, H. Rho, L. M. Smith, et al., Appl. Phys. Lett. 73, 3399 (1998).ADSGoogle Scholar
  11. 11.
    Q. K. K. Liu, N. Moll, M. Scheffer, and E. Pehlke, Phys. Rev. B 60, 17008 (1999).Google Scholar
  12. 12.
    J. A. Floro, M. B. Sinclair, E. Chason, et al., Phys. Rev. Lett. 84, 701 (2000).CrossRefADSGoogle Scholar
  13. 13.
    L. G. Wang, P. Kratzer, N. Moll, and M. Scheffer, Phys. Rev. B 62, 1897 (2000).ADSGoogle Scholar
  14. 14.
    I. M. Lifshits and V. V. Slezov, Zh. Éksp. Teor. Fiz. 35, 479 (1958) [Sov. Phys. JETP 8, 331 (1959)].Google Scholar
  15. 15.
    C. Wagner, Z. Elektrochem. 65, 581 (1961).Google Scholar
  16. 16.
    R. D. Vengrenovich, Ukr. Fiz. Zh. 22, 219 (1977).ADSGoogle Scholar
  17. 17.
    R. D. Vengrenovitch, Acta Metall. 30, 1079 (1982).Google Scholar
  18. 18.
    V. I. Psarev and R. D. Vengrenovich, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 8, 16 (1966).Google Scholar
  19. 19.
    B. Honigmann, Gleichgewichts-und Wachstumsformen von Kristallen (D. Steinkopff, Darmstadt, 1958; Inostrannaya Literatura, Moscow, 1961).Google Scholar
  20. 20.
    Th. Wiebach, M. Schmidbauer, M. Hanke, et al., Phys. Rev. B 61, 5571 (2000).CrossRefADSGoogle Scholar
  21. 21.
    Y. Wakayama, G. Gerth, P. Werner, et al., Appl. Phys. Lett. 77, 2328 (2000).CrossRefADSGoogle Scholar
  22. 22.
    N. S. Chokshi and J. M. Millunckick, Appl. Phys. Lett. 76, 2382 (2000).CrossRefADSGoogle Scholar
  23. 23.
    I. Kegel, T. H. Metzger, P. Fratzl, et al., Europhys. Lett. 45, 222 (1999).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • R. D. Vengrenovich
    • 1
  • Yu. V. Gudyma
    • 1
  • S. V. Yarema
    • 1
  1. 1.Fed’kovich State UniversityChernovtsyUkraine

Personalised recommendations