Physics of the Solid State

, Volume 43, Issue 12, pp 2284–2289

Phase and structural transformations in a molecular dynamics model of iron under ultrafast heating and cooling

  • A. V. Evteev
  • A. T. Kosilov
  • A. V. Milenin
Lattice Dynamics and Phase Transitions

DOI: 10.1134/1.1427958

Cite this article as:
Evteev, A.V., Kosilov, A.T. & Milenin, A.V. Phys. Solid State (2001) 43: 2284. doi:10.1134/1.1427958

Abstract

It is shown that a system of classical particles considered in a molecular dynamics model with Pak-Doyama pairwise interatomic potential adequately describes not only the various structural states of iron (melt, bcc crystal, metal glass) but also the complex self-organization processes occurring in first-and second-order phase transitions (crystallization and vitrification, respectively). When the temperature is varied at a constant rate of 6.6×1011 K/s, crystallization sets in from both the amorphous and the liquid state; at a rate of 1.9×1012 K/s, crystallization is observed only in the amorphous state; and when heated at a rate of 4.4×1012 K/s, the model amorphous iron transfers to the liquid state without crystallization. The energy of homogeneous formation of a crystal nucleus in the bulk of the amorphous phase of iron is calculated to be ∼0.71 eV under the assumption that there is a spectrum of activation energies.

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • A. V. Evteev
    • 1
  • A. T. Kosilov
    • 1
  • A. V. Milenin
    • 1
  1. 1.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations