Shedding and interaction of solitons in imperfect medium

  • M. Chertkov
  • I. Gabitov
  • I. Kolokolov
  • V. Lebedev
Nonlinear Dynamics

Abstract

The propagation of a soliton pattern through one-dimensional medium with weakly disordered dispersion is considered. Solitons, perturbed by this disorder, radiate. The emergence of a long-range interaction between the solitons, mediated by the radiation, is reported. Basic soliton patterns are analyzed. The interaction is triple and is extremely sensitive to the phase mismatch and relative spatial separations within the pattern. This phenomenon is a generic feature of any problem explaining adiabatic evolution of solitons through a medium with frozen disorder.

PACS numbers

42.65.Tg 42.81.Dp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Haus, W. Wong, and F. Khatri, J. Opt. Soc. Am. B 14, 304 (1997).ADSGoogle Scholar
  2. 2.
    L. Socci and M. Romagnoli, J. Opt. Soc. Am. B 16, 12 (1999).ADSGoogle Scholar
  3. 3.
    S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Methods (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).Google Scholar
  4. 4.
    A. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985; Mir, Moscow, 1989).Google Scholar
  5. 5.
    M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981; Mir, Moscow, 1986).Google Scholar
  6. 6.
    G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997).Google Scholar
  7. 7.
    L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).ADSGoogle Scholar
  8. 8.
    W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1957; Mir, Moscow, 1964).Google Scholar
  9. 9.
    V. I. Karpman and V. V. Soloviev, Physica D (Amsterdam) 3, 487 (1981).ADSGoogle Scholar
  10. 10.
    J. P. Gordon, Opt. Lett. 8, 596 (1983).ADSGoogle Scholar
  11. 11.
    E. A. Kuznetsov, A. V. Mikhailov, and I. A. Shimokhin, Physica D (Amsterdam) 87, 201 (1995).MathSciNetGoogle Scholar
  12. 12.
    D. J. Kaup, Phys. Rev. A 42, 5689 (1990).ADSGoogle Scholar
  13. 13.
    D. J. Kaup, Phys. Rev. A 44, 4582 (1991).CrossRefADSGoogle Scholar
  14. 14.
    N. N. Bogoljubov, Ju. A. Mitropoliskii, and A. M. Samoilenko, Methods of Accelerated Convergence in Non-linear Mechanics (Naukova Dumka, Kiev, 1969; Springer-Verlag, New York, 1976).Google Scholar
  15. 15.
    V. I. Karpman and E. M. Maslov, Zh. Éksp. Teor. Fiz. 73, 537 (1977) [Sov. Phys. JETP 46, 281 (1977)].MathSciNetGoogle Scholar
  16. 16.
    D. J. Kaup and A. C. Newell, Proc. R. Soc. London, Ser. A 361, 413 (1978).ADSGoogle Scholar
  17. 17.
    I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).Google Scholar
  18. 18.
    M. Chertkov, I. Gabitov, and J. Moeser, nlin.cd/0011043.Google Scholar
  19. 19.
    J. N. Elgin, Phys. Lett. A 110, 441 (1985).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665 (1986).ADSGoogle Scholar
  21. 21.
    G. E. Falkovich, I. Kolokolov, V. Lebedev, and S. K. Turitsyn, Phys. Rev. E 63, 025601 (2001).Google Scholar
  22. 22.
    M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev, submitted to Opt. Lett.; http:/cnls.lanl.gov/~chertkov/Fiber.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • M. Chertkov
    • 1
  • I. Gabitov
    • 1
  • I. Kolokolov
    • 1
    • 2
  • V. Lebedev
    • 1
    • 3
    • 4
  1. 1.Theoretical DivisionLANLLos AlamosUSA
  2. 2.Budker Institute of Nuclear Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Physics DepartmentWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations