Advertisement

Journal of Experimental and Theoretical Physics

, Volume 93, Issue 5, pp 1052–1064 | Cite as

Weak magnetohydrodynamic turbulence of a magnetized plasma

  • E. A. Kuznetsov
Plasma, Gases

Abstract

A weak turbulence of the magnetohydrodynamic waves in a strongly magnetized plasma was studied in the case when the plasma pressure is small as compared to the magnetic field pressure. In this case, the principal nonlinear mechanism is the resonance scattering of fast magnetoacoustic and Alfvén waves on slow magnetoacoustic waves. Since the former waves are high-frequency (HF) with respect to the latter, the total number of HF waves in the system is conserved (adiabatic invariant). In the weak turbulence regime, this integral of motion generates a Kolmogorov spectrum with a constant flux of the number of HF waves toward the longwave region. The shortwave region features a Kolmogorov spectrum with a constant energy flux. An exact angular dependence of the turbulence spectra is determined for the wave propagation angles close to the average magnetic field direction.

Keywords

Plasma Pressure Turbulence Regime Magnetic Field Direction Propagation Angle Turbulence Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).Google Scholar
  2. 2.
    A. M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5, 453 (1941).Google Scholar
  3. 3.
    V. E. Zakharov, V. S. L’vov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I (Springer-Verlag, Berlin, 1992).Google Scholar
  4. 4.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 51, 688 (1966) [Sov. Phys. JETP 24, 455 (1967)].Google Scholar
  5. 5.
    V. E. Zakharov, Prikl. Mekh. Tekh. Fiz. 4, 34 (1965).Google Scholar
  6. 6.
    V. E. Zakharov and N. N. Filonenko, Prikl. Mekh. Tekh. Fiz. 5, 62 (1967).Google Scholar
  7. 7.
    E. A. Kuznetsov, Zh. Éksp. Teor. Fiz. 62, 584 (1972) [Sov. Phys. JETP 35, 310 (1972)].Google Scholar
  8. 8.
    S. V. Nazarenko, A. B. Mikhailovski, et al., Phys. Lett. A 133, 407 (1988).ADSGoogle Scholar
  9. 9.
    A. M. Balk, V. E. Zakharov, and S. V. Nazarenko, Zh. Éksp. Teor. Fiz. 98, 446 (1990) [Sov. Phys. JETP 71, 249 (1990)].ADSGoogle Scholar
  10. 10.
    A. A. Galeev and V. N. Oraevskii, Dokl. Akad. Nauk SSSR 147, 71 (1962) [Sov. Phys. Dokl. 7, 988 (1963)].Google Scholar
  11. 11.
    E. A. Kuznetsov, Preprint No. 81-73, IYaF SO AN SSSR (Inst. of Nuclear Physics, Siberian Division, Academy of Sciences of USSR, Novosibirsk, 1973).Google Scholar
  12. 12.
    S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000); in Nonlinear MHD Waves and Turbulence, Ed. by T. Passot and P.-L. Sulem (Springer-Verlag, New York, 1999).CrossRefADSGoogle Scholar
  13. 13.
    V. E. Zakharov and E. A. Kuznetsov, Dokl. Akad. Nauk SSSR 194, 1288 (1970) [Sov. Phys. Dokl. 15, 913 (1971)].Google Scholar
  14. 14.
    V. E. Zakharov and E.A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997) [Phys. Usp. 40, 1087 (1997)].Google Scholar
  15. 15.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 35, 908 (1972)].Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Gostekhizdat, Moscow, 1959).Google Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1967; Pergamon, Oxford, 1975).Google Scholar
  18. 18.
    H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1932; Gostekhizdat, Moscow, 1947).Google Scholar
  19. 19.
    B. I. Davydov, Dokl. Akad. Nauk SSSR 69, 165 (1949).zbMATHMathSciNetGoogle Scholar
  20. 20.
    A. Frenkel, E. Levich, and L. Shtilman, Phys. Lett. A 88, 461 (1982).ADSMathSciNetGoogle Scholar
  21. 21.
    H. K. Moffatt, J. Fluid Mech. 35, 117 (1969).ADSzbMATHGoogle Scholar
  22. 22.
    V. A. Vladimirov and H. K. Moffatt, J. Fluid Mech 283, 125 (1995).ADSMathSciNetGoogle Scholar
  23. 23.
    V. P. Ruban, Zh. Éksp. Teor. Fiz. 116, 563 (1999) [JETP 89, 299 (1999)].Google Scholar
  24. 24.
    E. A. Kuznetsov and V. P. Ruban, Phys. Rev. E 61, 831 (2000).ADSMathSciNetGoogle Scholar
  25. 25.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 60, 1714 (1971) [Sov. Phys. JETP 33, 927 (1971)].Google Scholar
  26. 26.
    A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Usp. Fiz. Nauk 73, 132 (1961).Google Scholar
  27. 27.
    E. A. Kuznetsov, Fiz. Plazmy 2, 327 (1976) [Sov. J. Plasma Phys. 2, 178 (1976)].Google Scholar
  28. 28.
    V. E. Zakharov and A. M. Rubenchik, Prikl. Mekh. Tekh. Fiz. 5, 84 (1972).Google Scholar
  29. 29.
    E. A. Kuznetsov, S. L. Musher, and A. V. Shafarenko, Pis’ma Zh. Éksp. Teor. Fiz. 37, 204 (1983) [JETP Lett. 37, 241 (1983)].Google Scholar
  30. 30.
    E. A. Kuznetsov and S. L. Musher, Zh. Éksp. Teor. Fiz. 91, 1605 (1986) [Sov. Phys. JETP 64, 947 (1986)].ADSGoogle Scholar
  31. 31.
    A. Pushkarev and V. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).CrossRefADSGoogle Scholar
  32. 32.
    V. E. Zakharov, A. I. D’yachenko, and O. A. Vasil’ev, Pis’ma Zh. Éksp. Teor. Fiz. 73, 68 (2001) [JETP Lett. 73, 63 (2001)].Google Scholar
  33. 33.
    A. V. Kats and V. M. Kontorovich, Pis’ma Zh. Éksp. Teor. Fiz. 14, 392 (1971) [JETP Lett. 14, 265 (1971)].Google Scholar
  34. 34.
    V. E. Zakharov and E. A. Kuznetsov, Zh. Éksp. Teor. Fiz. 75, 904 (1978) [Sov. Phys. JETP 48, 458 (1978)].ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
  1. 1.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations