Journal of Experimental and Theoretical Physics

, Volume 93, Issue 5, pp 957–968 | Cite as

Color dipole BFKL-Regge factorization and high-energy photon-photon scattering

  • N. N. Nikolaev
  • J. Speth
  • V. R. Zoller
Nuclei, Particles, and Their Interaction

Abstract

Based on the color dipole representation, we investigate consequences for the γ*γ*, γ *γ scattering of the finding by Fadin, Kuraev, and Lipatov that the incorporation of asymptotic freedom into the BFKL equation makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL-Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to the γ *γ*, γ*γ scattteirng and the deep inelastic scattering on protons. Numerical predictions based on our early work on the color dipole BFKL phenomenology of the deep inelastic scattering on protons gives a good agreement with the recent experimental data from OPAL and L3 experiments at LEP200. We discuss the role of nonperturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable nonperturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL-Regge expansion for the γ*γ*, γ*γ scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Nisius, Phys. Rep. 332, 165 (2000).CrossRefADSGoogle Scholar
  2. 2.
    J. Bartels, A. De Roeck, and H. Lotter, Phys. Lett. B 389, 742 (1996).ADSGoogle Scholar
  3. 3.
    J. Bartels, C. Ewerz, and R. Staritzbichler, hep-ph/0004029.Google Scholar
  4. 4.
    S. J. Brodsky, F. Hautmann, and D. E. Soper, Phys. Rev. D 56, 6957 (1997).ADSGoogle Scholar
  5. 5.
    M. Boonekamp, A. De Roek, Ch. Royon, and S. Wallon, Nucl. Phys. B 555, 540 (1999).CrossRefADSGoogle Scholar
  6. 6.
    M. Acciarri et al. (L3 Collab.), Phys. Lett. B 436, 403 (1998).ADSGoogle Scholar
  7. 7.
    G. Abbiendi et al. (OPAL Collab.), Eur. Phys. J. C 14, 51 (2000); 14, 73 (2000); 14, 187 (2000); 14, 199 (2000); 14, 373 (2000).ADSGoogle Scholar
  8. 8.
    M. Acciarri et al. (L3 Collab.), Phys. Lett. B 453, 333 (1999).ADSGoogle Scholar
  9. 9.
    K. Ackerstaff et al. (OPAL Collab.), Phys. Lett. B 412, 225 (1997).ADSGoogle Scholar
  10. 10.
    Particle Data Group, Eur. Phys. J. C 3, 1 (1998).Google Scholar
  11. 11.
    V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, Phys. Rep. 15, 181 (1975).CrossRefADSGoogle Scholar
  12. 12.
    V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B 60, 50 (1975); E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Éksp. Teor. Fiz. 71, 840 (1976) [Sov. Phys. JETP 44, 443 (1976)]; Zh. É ksp. Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)].ADSGoogle Scholar
  13. 13.
    L. N. Lipatov, Zh. Éksp. Teor. Fiz. 90, 1536 (1986) [Sov. Phys. JETP 63, 904 (1986)].Google Scholar
  14. 14.
    Ya. Ya. Balitsky and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978) [Sov. J. Nucl. Phys. 28, 822 (1978)].Google Scholar
  15. 15.
    V. N. Gribov, B. L. Ioffe, I. Ya. Pomeranchuk, and A. P. Rudik, Zh. Éksp. Teor. Fiz. 42, 1419 (1962) [Sov. Phys. JETP 16, 220 (1963)].Google Scholar
  16. 16.
    N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller, Pis’ma Zh. Éksp. Teor. Fiz. 66, 134 (1997) [JETP Lett. 66, 138 (1997)].Google Scholar
  17. 17.
    N. N. Nikolaev and V. R. Zoller, Pis’ma Zh. Éksp. Teor. Fiz. 69, 91 (1999) [JETP Lett. 69, 103 (1999)]; Pis’ma Zh. Éksp. Teor. Fiz. 69, 176 (1999) [JETP Lett. 69, 187 (1999)].Google Scholar
  18. 18.
    N. N. Nikolaev, J. Speth, and V. R. Zoller, Phys. Lett. B 473, 157 (2000).ADSGoogle Scholar
  19. 19.
    N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller, Pis’ma Zh. Éksp. Teor. Fiz. 59, 8 (1994) [JETP Lett. 59, 6 (1994)].Google Scholar
  20. 20.
    N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller, Zh. Éksp. Teor. Fiz. 105, 1498 (1994) [JETP 78, 806 (1994)].Google Scholar
  21. 21.
    N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 327, 149 (1994); 333, 250 (1994); 327, 157 (1994).ADSGoogle Scholar
  22. 22.
    E. M. Levin and M. G. Ryskin, Yad. Fiz. 34, 1154 (1981) [Sov. J. Nucl. Phys. 34, 619 (1981)].Google Scholar
  23. 23.
    O. Nachtmann, Ann. Phys. 209, 436 (1991); H. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988); Yu. A. Simonov, Nucl. Phys. B 324, 67 (1989); H. Dosch, E. Ferreira, and A. Krämer, Phys. Rev. D 50, 1992 (1994); P. V. Landshoff and O. Nachtmann, Z. Phys. C 35, 405 (1987); H. G. Dosch, T. Gousset, G. Kulzinger, and H. J. Pirner, Phys. Rev. D 55, 2602 (1997); A. Donnachie and P. V. Landshoff, Phys. Lett. B 437, 408 (1998); K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017 (1999); U. D’Alesio, A. Metze, and H. J. Pirner, Eur. Phys. J. C 9, 601 (1999); G. Kulzinger, H. G. Dosch, and H. J. Pirner, Eur. Phys. J. C 7, 73 (1999).MATHGoogle Scholar
  24. 24.
    T. F. Walsh and P. M. Zerwas, Phys. Lett. B 44, 195 (1973); R. L. Kingsley, Nucl. Phys. B 60, 45 (1973).ADSGoogle Scholar
  25. 25.
    G. A. Schuler and T. Sjöstrand, Phys. Lett. B 376, 193 (1996).ADSGoogle Scholar
  26. 26.
    N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607 (1991).CrossRefGoogle Scholar
  27. 27.
    J. Nemchik, N. N. Nikolaev, E. Predazzi, et al., Zh. Éksp. Teor. Fiz. 113, 1930 (1998) [JETP 86, 1054 (1998)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • N. N. Nikolaev
    • 1
    • 2
  • J. Speth
    • 1
  • V. R. Zoller
    • 3
  1. 1.Institut für KernphysikForschungszentrum JülichJülichGermany
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institute for Theoretical and Experimental PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations