Journal of Experimental and Theoretical Physics

, Volume 93, Issue 4, pp 846–852 | Cite as

Rehybridization of the atomic orbitals and the field electron emission from nanostructured carbon

  • A. N. Obraztsov
  • A. P. Volkov
  • A. I. Boronin
  • S. V. Koshcheev
Solids Electronic Properties

Abstract

The field electron emission, structural features, and electronic properties of carbon films obtained by chemical vapor deposition were experimentally studied. It is shown that the field electron emission from the films composed of spatially oriented carbon nanotubes and platelike graphite nanocrystals is observed for the electric field strength lower by one to two orders of magnitude as compared to the values characteristic of the metal emitters. Experimental data reported for the first time are indicative of a local decrease in the electron work function in such carbon film materials as compared to that in graphite. A model of the emission center is proposed and a mechanism of the field electron emission from nanostructured carbon is described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119(781), 173 (1928).ADSGoogle Scholar
  2. 2.
    Non-Incandesced Cathodes, Ed. by M. I. Elinson (Sovetskoe Radio, Moscow, 1974).Google Scholar
  3. 3.
    C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).CrossRefADSGoogle Scholar
  4. 4.
    J. Robertson, Thin Solid Films 296, 61 (1997).CrossRefGoogle Scholar
  5. 5.
    R. J. Nemanich, P. K. Baumann, M. C. Banjamin, et al., Diamond Relat. Mater. 5, 790 (1996).Google Scholar
  6. 6.
    F. J. Himsel, J. A. Knapp, J. A. van Vechten, and D. E. Eastman, Phys. Rev. B 20, 624 (1979).ADSGoogle Scholar
  7. 7.
    M. W. Geis, N. N. Efremov, J. D. Woodhouse, et al., IEEE Electron Device Lett. 12, 456 (1991).CrossRefADSGoogle Scholar
  8. 8.
    S. A. Kajihara, A. Antonelli, J. Bernholc, and R. Car, Phys. Rev. Lett. 66, 2010 (1991).CrossRefADSGoogle Scholar
  9. 9.
    M. W. Geis, N. N. Efremov, K. E. Krohn, et al., Nature 393, 431 (1998).CrossRefGoogle Scholar
  10. 10.
    W. Zhu, G. P. Kochanski, S. Jin, et al., Appl. Phys. Lett. 67, 1157 (1995).ADSGoogle Scholar
  11. 11.
    J. W. Steeds, A. Gilmore, K. M. Bussman, et al., Diamond Relat. Mater. 8, 996 (1999).Google Scholar
  12. 12.
    A. T. Sowers, B. L. Ward, S. L. English, et al., Diamond Relat. Mater. 9, 1569 (2000).Google Scholar
  13. 13.
    W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, J. Appl. Phys. 78, 2707 (1995).ADSGoogle Scholar
  14. 14.
    O. Gröning, O. M. Küttel, P. Gröning, and L. Schlapbach, J. Vac. Sci. Technol. B 17, 1970 (1999).Google Scholar
  15. 15.
    J. Ristein, Diamond Relat. Mater. 9, 1129 (2000).Google Scholar
  16. 16.
    V. Ralchenko, A. Karabutov, I. Vlasov, et al., Diamond Relat. Mater. 8, 1496 (1999).Google Scholar
  17. 17.
    A. N. Obraztsov, V. P. Volkov, and I. Yu. Pavlovskii, Pis’ma Zh. Éksp. Teor. Fiz. 68, 56 (1998) [JETP Lett. 68, 59 (1998)].Google Scholar
  18. 18.
    A. N. Obraztsov, I. Yu. Pavlovsky, and A. P. Volkov, J. Vac. Sci. Technol. B 17, 674 (1999).CrossRefGoogle Scholar
  19. 19.
    A. N. Obraztsov, A. P. Volkov, and I. Yu. Pavlovsky, Diamond Relat. Mater. 9, 1190 (2000).Google Scholar
  20. 20.
    I. Yu. Pavlovskii and A. N. Obraztsov, Prib. Tekh. Éksp., No. 1, 152 (1998).Google Scholar
  21. 21.
    V. D. Frolov, A. V. Karabutov, V. I. Konov, et al., J. Phys. D 32, 815 (1999).CrossRefADSGoogle Scholar
  22. 22.
    O. Gröning, O. M. Küttel, Ch. Emmeneger, et al., J. Vac. Sci. Technol. B 18, 665 (2000).Google Scholar
  23. 23.
    J. E. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, 1992).Google Scholar
  24. 24.
    Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. Seah (Wiley, New York, 1983; Mir, Moscow, 1987).Google Scholar
  25. 25.
    A. N. Obraztsov, A. P. Volkov, I. Yu. Pavlovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 381 (1999) [JETP Lett. 69, 411 (1999)].Google Scholar
  26. 26.
    A. P. Volkov, A. N. Obraztsov, I. Yu. Pavlovskii, et al., Poverkhnost, Nos. 5–6, 161 (1999).Google Scholar
  27. 27.
    J.-M. Bonard, T. Stockli, F. Maier, et al., Phys. Rev. Lett. 81, 1441 (1998).CrossRefADSGoogle Scholar
  28. 28.
    H.-J. Ssheibe, H. Banzhof, A. Luft, et al., Abstract No. 8B.4 of the International Conference DIAMOND’98, Greece, 1998.Google Scholar
  29. 29.
    C. Lea, J. Phys. D 6, 1105 (1973).CrossRefADSGoogle Scholar
  30. 30.
    E. P. Sheshin, Ultramicroscopy 79, 101 (1999).Google Scholar
  31. 31.
    A. Y. Tcherepanov, A. G. Chakhovskoi, and V. B. Sharov, J. Vac. Sci. Technol. B 13, 482 (1995).CrossRefGoogle Scholar
  32. 32.
    A. L. Suvorov, E. P. Sheshin, V. V. Protasenko, et al., Vide, Couches Minces, No. 271, 326 (1994).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • A. P. Volkov
    • 1
  • A. I. Boronin
    • 2
  • S. V. Koshcheev
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations