Technical Physics

, Volume 46, Issue 11, pp 1437–1443 | Cite as

Field electron emission in graphite-like films

  • A. N. Obraztsov
  • I. Yu. Pavlovskii
  • A. P. Volkov
Surfaces, Electron and Ion Emission

Abstract

Results of investigation of carbon films deposited with the use of gas-phase chemical reactions in the plasma of a dc discharge are presented. Films obtained at different parameters of the deposition process varied widely in their structure and phase composition, from polycrystalline diamond to graphite-like material. Comparative study of the structure and phase composition of the films using Raman spectroscopy, cathodoluminescence, electron microscopy, and diffractometry, as well as the obtained field electron emission characteristics, have shown that the threshold value of the electric field strength for electron emission decreases with a decrease in the size of diamond crystallites and growth of the fraction of non-diamond carbon. The lowest threshold fields (less than 1.5 V/µm) are obtained for films consisting mainly of graphite-like material. A model based on the experimental data is proposed, which explains the mechanism of field electron emission in carbon materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Himpsel, J. A. Knapp, J. A. van Vechten, and D. E. Eastman, Phys. Rev. B 20, 624 (1979).ADSGoogle Scholar
  2. 2.
    J. van der Weide, Z. Zhang, P. K. Baumann, et al., Phys. Rev. B 50, 5803 (1994).ADSGoogle Scholar
  3. 3.
    S. P. Bozeman, P. K. Bauman, B. L. Ward, et al., Diamond Relat. Mater. 5, 802 (1996).Google Scholar
  4. 4.
    N. Eimori, Y. Mori, A. Hatta, et al., Diamond Relat. Mater. 4, 806 (1995).Google Scholar
  5. 5.
    W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, J. Appl. Phys. 78, 2707 (1995).ADSGoogle Scholar
  6. 6.
    J. Robertson, Thin Solid Films 296, 61 (1997).CrossRefGoogle Scholar
  7. 7.
    V. V. Zhirnov, G. J. Wojak, W. B. Choi, et al., J. Vac. Sci. Technol. A 15, 1733 (1997).CrossRefADSGoogle Scholar
  8. 8.
    E. J. Chi, J. Y. Shim, H. K. Baik, and S. M. Lee, Appl. Phys. Lett. 71, 324 (1997).CrossRefADSGoogle Scholar
  9. 9.
    R. J. Nemanich, P. K. Baumann, M. C. Benjamin, et al., Diamond Relat. Mater. 5, 790 (1996).Google Scholar
  10. 10.
    Z.-H. Huang, P. H. Cutler, N. M. Miskovsky, and T. E. Sullivan, Appl. Phys. Lett. 65, 2562 (1994).ADSGoogle Scholar
  11. 11.
    L. N. Dworsky, J. E. Jaskie, and R. C. Kane, US Patent No. 5180951.Google Scholar
  12. 12.
    A. V. Karabutov, V. I. Konov, S. M. Pimenov, et al., J. Phys. IV 6, C5–113 (1996).Google Scholar
  13. 13.
    A. A. Talin, L. S. Pan, K. F. McCarty, et al., Appl. Phys. Lett. 69, 3842 (1996).CrossRefADSGoogle Scholar
  14. 14.
    B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, Appl. Phys. Lett. 71, 1430 (1997).CrossRefADSGoogle Scholar
  15. 15.
    B. L. Weiss, A. Badzian, L. Pillone, and T. Badzian, Appl. Phys. Lett. 71, 794 (1997).CrossRefADSGoogle Scholar
  16. 16.
    A. A. Dadykin, A. G. Naumovets, V. D. Andreev, et al., Diamond Relat. Mater. 5, 771 (1996).Google Scholar
  17. 17.
    A. Y. Tcherepanov, A. G. Chakovskoi, and V. B. Sharov, J. Vac. Sci. Technol. B 13, 482 (1995).CrossRefGoogle Scholar
  18. 18.
    A. L. Suvorov, E. P. Sheshin, V. V. Protasenko, et al., Vide, Couches Minces, Suppl., No. 271, 326 (1994).Google Scholar
  19. 19.
    Yu. V. Gulyaev, L. A. Chernozatonskii, Z. Ja. Kosakovskaja, et al., J. Vac. Sci. Technol. B 13, 435 (1995).Google Scholar
  20. 20.
    W. A. De Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995).ADSGoogle Scholar
  21. 21.
    Y. Saito, K. Hamaguchi, K. Hata, et al., Nature 389, 555 (1997).CrossRefGoogle Scholar
  22. 22.
    W. A. De Heer, J.-M. Bonard, K. Fauth, and A. Châtelain, Adv. Mater. 9, 87 (1997).Google Scholar
  23. 23.
    F. S. Baker, A. R. Osborn, and J. Williams, J. Phys. D 7, 2105 (1974).CrossRefADSGoogle Scholar
  24. 24.
    S. Yamamoto, S. Hosoki, S. Fukuhara, and M. Futamoto, Surf. Sci. 86, 734 (1979).CrossRefGoogle Scholar
  25. 25.
    I. Yu. Pavlovskii and A. N. Obraztsov, Prib. Tekh. Éksp., No. 1, 152 (1998).Google Scholar
  26. 26.
    B. V. Spitsyn, in Handbook of Crystal Growth, Vol. 3: Thin Films and Epitaxy (Elsevier, Amsterdam, 1994), p. 402.Google Scholar
  27. 27.
    R. E. Shroder, R. J. Nemanich, and J. T. Glass, Phys. Rev. B 41, 3738 (1990).CrossRefADSGoogle Scholar
  28. 28.
    T. López-Ríos, E. Sandre, S. Leclerq, and E. Sauvain, Phys. Rev. Lett. 76, 4935 (1996).ADSGoogle Scholar
  29. 29.
    P. Lespade, R. Al-Jishi, and M. S. Dresselhaus, Carbon 20, 427 (1982).CrossRefGoogle Scholar
  30. 30.
    R. J. Graham, T. D. Moustakas, and M. M. Disco, J. Appl. Phys. 69, 3212 (1991).ADSGoogle Scholar
  31. 31.
    A. N. Obraztsov, G. V. Saparin, S. K. Obyden, and I. Yu. Pavlovsky, Scanning 19, 455 (1997).Google Scholar
  32. 32.
    A. N. Obraztsov, H. Okushi, H. Watanabe, and I. Yu. Pavlovskii, Fiz. Tverd. Tela (St. Petersburg) 39, 1787 (1997) [Phys. Solid State 39, 1594 (1997)].Google Scholar
  33. 33.
    Y. Mori, N. Eimori, H. Kozuka, et al., Appl. Phys. Lett. 60, 47 (1992).ADSGoogle Scholar
  34. 34.
    A. N. Obraztsov, I. Yu. Pavlovsky, and A. P. Volkov, J. Vac. Sci. Technol. B 17, 674 (1999).CrossRefGoogle Scholar
  35. 35.
    Yu. V. Gulyaev, N. I. Sinitsyn, and O. E. Glukhova, in Proceedings of the International Vacuum Microelectronics Conference, IVMC’97, Kyongju, Korea, 1997, p. 523.Google Scholar
  36. 36.
    J. Robertson and E. P. O’Reilly, Phys. Rev. B 35, 2946 (1987).ADSGoogle Scholar
  37. 37.
    J. Robertson, Adv. Phys. 35, 317 (1986).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • I. Yu. Pavlovskii
    • 1
  • A. P. Volkov
    • 1
  1. 1.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations