Physics of Atomic Nuclei

, Volume 64, Issue 10, pp 1799–1811 | Cite as

Green's function and scattering matrix in a discrete oscillator basis

  • O. A. Rubtsova
  • V. I. Kukulin
Nuclei Theory

Abstract

Convenient analytic finite-dimensional approximations for basic operators of scattering theory-specifically, the Green's function and the off-shell T matrix—are constructed in an oscillator basis for real-and complex-valued local and nonlocal interaction potentials. It is shown that the approximate operators converge smoothly to their exact counterparts as the dimensions of the oscillator basis are increased step by step. The simple and rather accurate formulas obtained in this study can be widely used in various applications of quantum scattering theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Rubtsova and V. I. Kukulin, Yad. Fiz. 64, 1769 (2001) [Phys. At. Nucl. 64, 1689 (2001)].Google Scholar
  2. 2.
    G. F. Filippov and I. P. Okhrimenko, Yad. Fiz. 32, 932 (1980) [Sov. J. Nucl. Phys. 32, 480 (1980)].Google Scholar
  3. 3.
    Yu. I. Nechaev and Yu. F. Smirnov, Yad. Fiz. 35, 1385 (1982) [Sov. J. Nucl. Phys. 35, 808 (1982)].Google Scholar
  4. 4.
    A. M. Shirokov and Y. F. Smirnov, Theor. Math. Phys. 117, 1291 (1998).MathSciNetGoogle Scholar
  5. 5.
    V. S. Vasilevsky and F. Arickx, nucl-th/0005048.Google Scholar
  6. 6.
    H. A. Yamani and M. S. Abdelmonem, J. Phys. B 30, 1633 (1997).CrossRefADSGoogle Scholar
  7. 7.
    C. T. Corcoran and P. W. Langhoff, J. Math. Phys. 18, 651 (1977).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    J. R. Winick and W. P. Reinhardt, Phys. Rev. A 18, 910 (1978).ADSGoogle Scholar
  9. 9.
    I. Cacelli, V. Carravetta, and A. Rizzo, J. Chem. Phys. 98, 8742 (1993).CrossRefADSGoogle Scholar
  10. 10.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1983; Gordon and Breach, New York, 1986).Google Scholar
  11. 11.
    M. Moshinsky, The Harmonic Oscillator in Modern Physics: From Atoms to Quarks (Gordon and Breach, New York, 1969; Mir, Moscow, 1972).Google Scholar
  12. 12.
    V. I. Kukulin and V. N. Pomerantsev, Yad. Fiz. 50, 27 (1989) [Sov. J. Nucl. Phys. 50, 17 (1989)].Google Scholar
  13. 13.
    R. Y. Rasoanaivo and G. H. Rawitscher, Phys. Rev. C 39, 1709 (1989).CrossRefADSGoogle Scholar
  14. 14.
    P. A. D. Piyadasa, M. Kawai, M. Kamimura, and M. Yahiro, Phys. Rev. C 60, 044611 (1999).Google Scholar
  15. 15.
    R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966; Mir, Moscow, 1969).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • O. A. Rubtsova
    • 1
  • V. I. Kukulin
    • 1
  1. 1.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations