Advertisement

Plasma Physics Reports

, Volume 27, Issue 10, pp 843–851 | Cite as

Laboratory simulation of the collision of supernova 1987A with its circumstellar ring nebula

  • Y.-G. Kang
  • H. Nishimura
  • H. Takabe
  • K. Nishihara
  • A. Sunahara
  • T. Norimatsu
  • K. Nagai
  • H. Kim
  • M. Nakatsuka
  • H. J. Kong
Plasma Dynamics

Abstract

The collision of the remnant of supernova 1987A with its circumstellar ring is laboratory-simulated by using the Gekko XII laser fusion facility at the Institute of Laser Engineering, Osaka University. The pure hydrodynamic approximation was applied using the invariance of the Euler equations. The basic properties of the formation of a young supernova remnant and its collision with the ring are illustrated. Shock wave propagation and plasma flow with triple wavy, vortex ringlike structures were observed using gated X-ray shadowgraphy. The observed hydrodynamic behaviors compare favorably with one-and two-dimensional numerical simulations and further illustrate important qualitative trends. Our experiments suggest the shock reverberation between the ring and the contact discontinuity in the supernova remnant 1987A and resultant oscillation and enhancement of X-ray emission, as well as the emergence of downstream vortex structures.

Keywords

Vortex Shock Wave Contact Discontinuity Supernova Remnant Shock Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Egeland and E. Leer, IEEE Trans. Plasma Sci. PS-14, 666 (1986).Google Scholar
  2. 2.
    H. Alfvén, Phys. Today 33 (9), 22 (1986).Google Scholar
  3. 3.
    G.-C. Falthammar, IEEE Trans. Plasma Sci. PS-14, 616 (1986).ADSGoogle Scholar
  4. 4.
    A. L. Peratt, Physics of the Plasma Universe (Springer-Verlag, New York, 1992).Google Scholar
  5. 5.
    J. Dawson, Phys. Fluids 7, 981 (1964).Google Scholar
  6. 6.
    J. D. Lindl, Phys. Plasmas 42, 3933 (1995).ADSGoogle Scholar
  7. 7.
    B. Remington, R. P. Drake, H. Takabe, and D. Arnett, Science 284, 1488 (1999).CrossRefADSGoogle Scholar
  8. 8.
    D. Ryutov, R. P. Drake, J. Kane, et al., Astrophys. J. 518, 821 (1999).CrossRefADSGoogle Scholar
  9. 9.
    J. Kane, D. Arnett, B. Remington, et al., Phys. Plasmas 284, 1488 (1999).Google Scholar
  10. 10.
    J. Kane, D. Arnett, B. Remington, et al., Astrophys. J. Lett. 478, L75 (1997).CrossRefADSGoogle Scholar
  11. 11.
    Yu. P. Zakharov, A. M. Orishich, A. G. Ponomarenko, and V. G. Poshukh, Fiz. Plazmy 12, 1170 (1986) [Sov. J. Plasma Phys. 12, 674 (1986)].Google Scholar
  12. 12.
    B. Remington, R. P. Drake, H. Takabe, and D. Arnett, Phys. Plasmas 7, 1641 (2000).CrossRefADSGoogle Scholar
  13. 13.
    R. P. Drake, J. Geophys. Res. 284, 1488 (1999).Google Scholar
  14. 14.
    P. Plait, P. Lundqvist, R. Chevalier, et al., Astrophys. J. 439, 730 (1995).CrossRefADSGoogle Scholar
  15. 15.
    C. J. Burrows, J. Krist, J. J. Hester, et al., Astrophys. J. 452, 680 (1995).CrossRefADSGoogle Scholar
  16. 16.
    E. Michael, R. McCray, C. S. J. Pun, et al., Astrophys. J. Lett. 509, L117 (1998).CrossRefADSGoogle Scholar
  17. 17.
  18. 18.
    T. Suzuki, T. Shigeyama, and K. Nomoto, Astron. Astrophys. 274, 883 (1993).ADSGoogle Scholar
  19. 19.
    K. Masai and K. Nomoto, Astrophys. J. 424, 924 (1994).CrossRefADSGoogle Scholar
  20. 20.
    D. Luo, R. McCray, and J. Slavin, Astrophys. J. 430, 264 (1994).CrossRefADSGoogle Scholar
  21. 21.
    K. Borkowski, J. Blondin, and R. McCray, Astrophys. J. 477, 281 (1997).CrossRefADSGoogle Scholar
  22. 22.
    R. P. Drake, S. G. Glendinning, K. Estabrook, et al., Phys. Rev. Lett. 81, 2068 (1998); R. P. Drake, J. J. Caroll, K. Estabrook, et al., Astrophys. J. Lett. 500, L157 (1998).CrossRefADSGoogle Scholar
  23. 23.
    R. Klein, K. Budil, T. Perry, and D. Bach, Astrophys. J., Suppl. Ser. 127, 379 (2000).CrossRefADSGoogle Scholar
  24. 24.
    J. T. Hunt and D. R. Speck, Opt. Eng. 28, 461 (1989).Google Scholar
  25. 25.
    R. Chevalier, Astrophys. J. 258, 790 (1982).CrossRefADSGoogle Scholar
  26. 26.
    H. Takabe and T. Ishii, Jpn. J. Appl. Phys. 32, 5575 (1993).CrossRefGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, in Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1959), Sect. 92.Google Scholar
  28. 28.
    R. Chevalier and V. Dwarkadas, Astrophys. J. Lett. 452, L45 (1995).CrossRefADSGoogle Scholar
  29. 29.
    P. Lundqvist, Astrophys. J. 511, 389 (1999).CrossRefADSGoogle Scholar
  30. 30.
    R. Chevalier, J. Blondin, and R. Emmering, Astrophys. J. 392, 118 (1992).CrossRefADSGoogle Scholar
  31. 31.
    J. Kane, R. P. Drake, and B. Remington, Astrophys. J. 511, 335 (1999).CrossRefADSGoogle Scholar
  32. 32.
    D. K. Bradley, in Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1991), Vol. 9, p. 323.Google Scholar
  33. 33.
    C. Yamanaka, Y. Kato, Y. Izawa, et al., IEEE J. Quantum Electron. QE-17, 1639 (1981).Google Scholar
  34. 34.
    Y. Kato, K. Mima, N. Miyanaga, et al., Phys. Rev. Lett. 53, 1057 (1984).CrossRefADSGoogle Scholar
  35. 35.
    M. Katayama and Y. Izawa, Rev. Sci. Instrum. 62, 124 (1991).CrossRefADSGoogle Scholar
  36. 36.
    P. Colella and H. M. Glaz, J. Comput. Phys. 59, 264 (1985).CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    B. van Leer, J. Comput. Phys. 32, 101 (1979).ADSGoogle Scholar
  38. 38.
    P. Loetstedt, J. Comput. Phys. 47, 211 (1982).MathSciNetzbMATHGoogle Scholar
  39. 39.
    C. F. McKee and J. Truelove, Phys. Rep. 256, 157 (1995).CrossRefADSGoogle Scholar
  40. 40.
    J. H. Hass and B. Sturtevant, J. Fluid Mech. 181, 41 (1987).ADSGoogle Scholar
  41. 41.
    J. Stone and M. L. Norman, Astrophys. J. Lett. 390, L17 (1992).CrossRefADSGoogle Scholar
  42. 42.
    R. Klein, C. F. McKee, and P. Collela, Astrophys. J. 420, 213 (1994).CrossRefADSGoogle Scholar
  43. 43.
    N. J. Zabusky and S. M. Zeng, J. Fluid Mech. 362, 327 (1998).CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    N. J. Zabusky, Ann. Rev. Fluid Mech. 31, 495 (1999).CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    P. Nulsen, Mon. Not. R. Astron. Soc. 198, 1007 (1982).ADSGoogle Scholar
  46. 46.
    J. E. Borovsky, M. B. Pongratz, R. A. Roussel-Dupre, and T. Tan, Astrophys. J. 280, 802 (1984).CrossRefADSGoogle Scholar
  47. 47.
    B. I. Jun and T. W. Jones, Astrophys. J. 511, 774 (1999).CrossRefADSGoogle Scholar
  48. 48.
    D. Ryutov, R. P. Drake, and B. Remington, Astrophys. J., Suppl. Ser. 127, 465 (2000).CrossRefADSGoogle Scholar
  49. 49.
    M. Mac Low, C. F. McKee, R. Klein, et al., Astrophys. J. 433, 757 (1994).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • Y.-G. Kang
    • 1
    • 2
  • H. Nishimura
    • 1
  • H. Takabe
    • 1
  • K. Nishihara
    • 1
  • A. Sunahara
    • 1
  • T. Norimatsu
    • 1
  • K. Nagai
    • 1
  • H. Kim
    • 2
  • M. Nakatsuka
    • 1
  • H. J. Kong
    • 3
  1. 1.Institute of Laser EngineeringOsaka UniversitySuita, OsakaJapan
  2. 2.Department of Materials Science and Engineering KwangjuInstitute of Science and TechnologyPuk-gu, KwangjuKorea
  3. 3.Department of PhysicsKorea Advanced Institute of Science and TechnologyYusong-gu, TaejonKorea

Personalised recommendations