Electronic structure of the new MgCNi3 superconductor and related intermetallic compounds

  • I. R. Shein
  • A. L. Ivanovskii
  • N. I. Medvedeva
Condensed Matter

Abstract

The band structure of the new perovskite-like MgCNi3 superconductor is studied by the self-consistent FP-LMTO method. The superconducting properties of MgCNi3 are associated with the occurrence of an intense peak in the density of Ni3d states at the Fermi level. The absence of superconductivity for nonstoichiometric MgC1−xNi3 compositions is caused by the transition of the system to a magnetic state. The possibilities of finding superconductivity for ScBNi3, InBNi3, MgCCo3, and MgCCu3 isostructural with MgCNi3 are discussed.

PACS numbers

71.20.Lp 74.70.Dd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Nature 410, 63 (2001).CrossRefADSGoogle Scholar
  2. 2.
    N. I. Medvedeva, Yu. E. Medvedeva, A. L. Ivanovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73, 378 (2001) [JETP Lett. 73, 336 (2001)].Google Scholar
  3. 3.
    V. A. Gasparov, N. S. Sidorov, I. I. Zver’kova, et al., JETP Lett. 73, 532 (2001).CrossRefADSGoogle Scholar
  4. 4.
    D. Kaczorowski, J. Klamut, and A. Zaleski, cond-mat/0104479 (2001).Google Scholar
  5. 5.
    G. K. Strukova, V. F. Degtyareva, D. V. Shivkun, et al., cond-mat/0105293 (2001).Google Scholar
  6. 6.
    D. Young, P. Adams, J. Chan, et al., cond-mat/0104063 (2001).Google Scholar
  7. 7.
    T. He, Q. Huang, A. P. Ramirez, et al., cond-mat/0103296 (2001).Google Scholar
  8. 8.
    A. Taraphder, R. Pandit, H. R. Krishnamurthy, and T. V. Ramakrishnan, Int. J. Mod. Phys. B 10, 863 (1996).ADSGoogle Scholar
  9. 9.
    A. L. Ivanovskii, Usp. Khim. 64, 499 (1995).Google Scholar
  10. 10.
    A. L. Ivanovskii, Usp. Khim. 67, 493 (1998).Google Scholar
  11. 11.
    S. Y. Li, R. Fan, X. H. Chen, et al., cond-mat/0104554 (2001).Google Scholar
  12. 12.
    Z. Q. Mao, M. M. Rosario, R. Nelson, et al., cond-mat/0105280 (2001).Google Scholar
  13. 13.
    M. A. Hayward, M. K. Haas, T. He, et al., cond-mat/0104541 (2001).Google Scholar
  14. 14.
    Z. A. Ren, G. C. Che, S. L. Jia, et al., cond-mat/0105366 (2001).Google Scholar
  15. 15.
    M. Methfessel and M. Scheffler, Physica B (Amsterdam) 172, 175 (1991).ADSGoogle Scholar
  16. 16.
    S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).Google Scholar
  17. 17.
    S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSGoogle Scholar
  18. 18.
    Q. Huang, T. He, K. A. Regan, et al., cond-mat/0105240 (2001).Google Scholar
  19. 19.
    J. D. Singh and I. I. Mazin, cond-mat/0105577 (2001).Google Scholar
  20. 20.
    Yu. B. Kuz’ma, Crystal Chemistry of Borides (Vishcha Shkola, Lvov, 1983).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • I. R. Shein
    • 1
  • A. L. Ivanovskii
    • 1
  • N. I. Medvedeva
    • 1
  1. 1.Institute of Solid-State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations