Optics and Spectroscopy

, Volume 91, Issue 3, pp 477–483 | Cite as

Theoretical study of the Smith-Purcell effect involving photonic crystals

  • K. Ohtaka
  • S. Yamaguti
Quantum Computations and Optical Processes

Abstract

The Smith-Purcell radiation spectrum is calculated for the trajectory of a running charge parallel to the surface of a photonic crystal of dielectric spheres. Analysis is given for the dependence of the spectrum on the velocity of the running charge, the distance of the trajectory from the photonic crystal, and on the light absorption of the photonic crystal. It is shown that all the characteristic features of the radiation spectrum are satisfactorily explained by treating a direct light emitted by the charge as an incident light on the photonic crystal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    See, for example, J. Lightwave Technology 17 (11) (1999), which is one of the most recent feature issues of photonic crystal, and the references therein. Google Scholar
  3. 3.
    S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).ADSCrossRefGoogle Scholar
  4. 4.
    For the recent works on Smith-Purcell effect, see, e.g. J. H. Brownell, J. Walsh, H. G. Kirk, et al., Nucl. Instrum. Methods Phys. Res. A 393, 323 (1997); O. Haeverle, P. Rullhusen, J.-M. Salome, and N. Maene, Phys. Rev. E 55, 4675 (1977); J. H. Brownell, J. Walsh, and G. Doucas, Phys. Rev. E 57, 1075 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    For the SP radiation as a coherent light source, see, e.g., Y. Shibata et al., Phys. Rev. E 57, 1061 (1998) and the references therein; For the radiation from SEM involving induced emission, see, J. Urata et al., Phys. Rev. Lett. 80, 516 (1998).ADSGoogle Scholar
  6. 6.
    K. Ohtaka, in Proceeding of the International Workshop on Photonic and Electromagnetic Crystal Structures, Sendai, 2000 (in press).Google Scholar
  7. 7.
    K. Ohtaka, Phys. Rev. B 19, 5057 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    K. Ohtaka, J. Lightwave Technol. 17, 2161 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    J. D. Jackson, in Classical Electrodynamics (Wiley, New York, 1975, 2nd ed.), Chap. 13, p. 618.MATHGoogle Scholar
  10. 10.
    J. B. Pendry, in Low Energy Electron Diffraction (Academic, London, 1974), p. 138; For the detailed account of the application to photonic crystal, see, e.g., K. Ohtaka and Y. Tanabe, J. Phys. Soc. Jpn. 65, 60 (1966).Google Scholar
  11. 11.
    Equations (4.27) and (4.28) of K. Ohtaka, J. Phys. C 13, 667 (1980).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • K. Ohtaka
    • 1
  • S. Yamaguti
    • 2
  1. 1.Center of Frontier ScienceChiba UniversityChibaJapan
  2. 2.Department of Applied Physics, Faculty of EngineeringChiba UniversityChibaJapan

Personalised recommendations