Advertisement

Optics and Spectroscopy

, Volume 91, Issue 3, pp 363–367 | Cite as

Thermodynamical analogues in quantum information theory

  • D. Rohrlich
Quantum Information and Quantum Measurements

Abstract

The first step in quantum information theory is the identification of entanglement as a valuable resource. The next step is learning how to efficiently exploit this resource. We learn how to efficiently exploit entanglement by applying analogues of thermodynamical concepts. These concepts include reversibility, entropy, and the distinction between intensive and extensive quantities. We discuss some of these analogues and show how they lead to a measure of entanglement for pure states. We also ask whether these analogues are more than analogues, and note that, locally, entropy of entanglement is thermodynamical entropy.

Keywords

Entropy Entangle State Pure State Heat Engine Quantum Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935).ADSCrossRefGoogle Scholar
  2. 2.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  4. 4.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    A. Shimony, in The Dilemma of Einstein, Podolsky and Rosen—60 Years Later, Ed. by A. Mann and M. Revzen (Institute of Physics Publ., Bristol, 1996), Ann. Isr. Phys. Soc. 12 (1996).Google Scholar
  6. 6.
    S. Weisner, SIGACT News 15, 78 (1983).CrossRefGoogle Scholar
  7. 7.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).CrossRefzbMATHGoogle Scholar
  8. 8.
    C. H. Bennett, G. Brassard, C. Crépeau, et al., Phys. Rev. Lett. 70, 1895 (1993).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    C. H. Bennett, G. Brassard, S. Popescu, et al., Phys. Rev. Lett. 76, 722 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997); S. Popescu and D. Rohrlich, in Introduction to Quantum Computation and Information, Ed. by H.-K. Lo, S. Popescu, and T. P. Spiller (World Scientific, Singapore, 1998), pp. 29–48.ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Jozsa and B. Schumacher, J. Mod. Opt. 41, 2343 (1994); B. Schumacher, Phys. Rev. A 51, 2738 (1995).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, 1963), Vol. 1, Sect. 4–2.Google Scholar
  14. 14.
    D. Rohrlich, to be published.Google Scholar
  15. 15.
    Y. Aharonov, private communicationGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • D. Rohrlich
    • 1
  1. 1.School of Physics and AstronomyTel Aviv UniversityRamat Aviv, Tel AvivIsrael

Personalised recommendations