Advertisement

Fermion zero modes in Painlevé-Gullstrand black hole

  • G. E. Volovik
Gravity, Astrophysics

Abstract

The Painlevé-Gullstrand metric of a black hole allows one to discuss the fermion zero modes inside the hole. The statistical mechanics of the fermionic microstates can be responsible for the black hole thermodynamics. These fermion zero modes also lead to quantization of the horizon area.

PACS numbers

04.70.Dy 05.30.Fk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Painlevé, C. R. Hebd. Seances Acad. Sci. 173, 677 (1921); A. Gullstrand, Ark. Mat. Astron. Fys. 16 (8), 1 (1922).Google Scholar
  2. 2.
    K. Martel and E. Poisson, Am. J. Phys. 69, 476 (2001).CrossRefADSGoogle Scholar
  3. 3.
    R. Schützhold, Phys. Rev. D 64, 024029 (2001).Google Scholar
  4. 4.
    M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    C. Doran, Phys. Rev. D 61, 067503 (2000).Google Scholar
  6. 6.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981); Phys. Rev. D 51, 2827 (1995).CrossRefADSGoogle Scholar
  7. 7.
    M. Visser, Class. Quantum Grav. 15, 1767 (1998).CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    G. E. Volovik, gr-qc/0005091.Google Scholar
  9. 9.
    T. Jacobson and G. E. Volovik, Phys. Rev. D 58, 064021 (1998).Google Scholar
  10. 10.
    M. Stone, cond-mat/0012316.Google Scholar
  11. 11.
    S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996); S. Corley, Phys. Rev. D 57, 6280 (1998); S. Corley and T. Jacobson, Phys. Rev. D 59, 124011 (1999).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 73, 415 (2001) [JETP Lett. 73, 371 (2001)].Google Scholar
  13. 13.
    S. W. Hawking, Nature 248, 30 (1974).CrossRefADSGoogle Scholar
  14. 14.
    A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967) [Sov. Phys. Dokl. 12, 1040 (1968)].Google Scholar
  15. 15.
    T. Jacobson, gr-qc/9404039.Google Scholar
  16. 16.
    A. F. Andreev, Zh. Éksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)].Google Scholar
  17. 17.
    C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).ADSGoogle Scholar
  18. 18.
    J. D. Bekenstein, in Proceedings of the Eighth Marcel Grossman Meeting, Ed. by Tsvi Piran (World Scientific, Singapore, 1999); gr-qc/9710076.Google Scholar
  19. 19.
    H. A. Kastrup, Phys. Lett. B 413, 267 (1997).ADSMathSciNetGoogle Scholar
  20. 20.
    V. F. Mukhanov, Pis’ma Zh. Éksp. Teor. Fiz. 44, 50 (1986) [JETP Lett. 44, 63 (1986)].MathSciNetGoogle Scholar
  21. 21.
    P. O. Mazur, in Proceedings of the Eighth Marcel Grossman Meeting, Ed. by Tsvi Piran (World Scientific, Singapore, 1999); hep-th/9712208.Google Scholar
  22. 22.
    G. E. Volovik, Exotic Properties of Superfluid 3 He (World Scientific, Singapore, 1992).Google Scholar
  23. 23.
    P. O. Mazur, hep-th/9708133.Google Scholar
  24. 24.
    S. Liberati, S. Sonego, and M. Visser, Class. Quantum Grav. 17, 2903 (2000).CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Yu. G. Makhlin and G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 62, 719 (1995) [JETP Lett. 62, 737 (1995)].Google Scholar
  26. 26.
    S. G. Naculich, Phys. Rev. Lett. 75, 998 (1995).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations