Theory of the resonant properties of electrons localized on the surface of liquid helium

  • P. D. Grigor’ev
  • A. M. Dyugaev


The problem of the shape of the line of optical transition of an electron between bound states on the surface of liquid helium is solved within the independent boson model. Such bound states are realized, for example, in the potential of a positively charged impurity located on a substrate or in the field of a He+ ion located beneath the surface. Reference is made to the importance of the relaxation processes of the dimple on the helium surface under the electron. The adiabatic approximation, in the case of which the dimple does not change during the time of electron transition, is not always valid. At low temperatures, two maxima may appear on the absorption line. It is demonstrated that the far tails of the optical absorption line feature a universal (Urbach rule) exponential dependence on the electron transition energy.


Spectroscopy State Physics Helium Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. B. Shikin and Yu. P. Monarkha, Two-dimensional Charged Systems in Helium (Nauka, Moscow, 1989).Google Scholar
  2. 2.
    G. A. Farias and F. M. Peeters, Phys. Rev. B 55, 3763 (1997).CrossRefADSGoogle Scholar
  3. 3.
    V. S. Édel’man, Pis’ma Zh. Éksp. Teor. Fiz. 24, 510 (1976) [JETP Lett. 24, 468 (1976)].Google Scholar
  4. 4.
    P. D. Grigor’ev, Pis’ma Zh. Éksp. Teor. Fiz. 66, 630 (1997) [JETP Lett. 66, 630 (1997)].Google Scholar
  5. 5.
    G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).Google Scholar
  6. 6.
    A. Cheng and P. M. Platzman, Solid State Commun. 25, 813 (1978).CrossRefGoogle Scholar
  7. 7.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).Google Scholar
  8. 8.
    Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1973), Vol. 1.Google Scholar
  9. 9.
    V. S. Édel’man, Zh. Éksp. Teor. Fiz. 77, 673 (1979) [Sov. Phys. JETP 50, 338 (1979)].Google Scholar
  10. 10.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984), pp. 365, 366.Google Scholar
  11. 11.
    A. M. Dyugaev, A. S. Rozhavskii, I. D. Vagner, and P. Wyder, Pis’ma Zh. Éksp. Teor. Fiz. 67, 410 (1998) [JETP Lett. 67, 434 (1998)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • P. D. Grigor’ev
    • 1
    • 2
  • A. M. Dyugaev
    • 2
    • 3
  1. 1.Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Grenoble High Magnetic Field LaboratoryMPI-FRF and CNRS, BP166GrenobleFrance
  3. 3.Max-Plank-Institut für Physik Komplexer SystemeDresdenDeutschland

Personalised recommendations