Advertisement

The Hanle effect in forward scattering in excited media

  • B. A. Veklenko
Atoms, Spectra, Radiation
  • 27 Downloads

Abstract

A new method for calculating the density matrix of a quantized electromagnetic field which interacts with the environment in the presence of kinetic processes in the medium is suggested. This method accurately takes into account photon-photon quantum correlators and possesses certain symmetry properties, which substantially facilitate the summation of the Feynman diagrams that arise in the calculations. Forward scattering of resonance radiation by two-level gas atoms in a magnetic field is considered as an application. Insufficiency of a semiclassical description of this coherent process in excited media with the use of the unique tensor index of refraction is shown to follow from quantum electrodynamics. The introduction of one more function depending on the frequency of irradiation and the concentration of excited atoms is necessary. Experiments that simultaneously determine both this additional function and the standard refractive index of the medium are specified.

Keywords

Elementary Particle Refraction Electromagnetic Field Density Matrix Additional Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Corney, B. P. Kibble, and G. Series, Proc. R. Soc. London, Ser. A 293, 70 (1966).ADSGoogle Scholar
  2. 2.
    S. Giraud-Cotton, V. P. Kaftandjian, and L. Klein, Phys. Rev. A 32, 2211 (1985).ADSGoogle Scholar
  3. 3.
    B. Lobodziński and W. Gawlik, Phys. Scr. T T70, 138 (1997).Google Scholar
  4. 4.
    B. W. Holmes and J. A. P. Griffith, J. Phys. B 28, 2829 (1995).ADSGoogle Scholar
  5. 5.
    W. Gawlik, J. Kawalski, R. Neumann, and F. Trager, Phys. Lett. A 48, 283 (1974).CrossRefADSGoogle Scholar
  6. 6.
    B. Ståhlberg, P. Jungner, T. Fellman, and Å. Lindberg, Appl. Phys. B B50, 547 (1990).Google Scholar
  7. 7.
    X. Chen, V. L. Telegli, and A. Weis, Opt. Commun. 74, 301 (1990).CrossRefADSGoogle Scholar
  8. 8.
    L. M. Barkov, D. A. Melik-Pashaev, and M. S. Zolotarev, Opt. Commun. 70, 467 (1989).CrossRefADSGoogle Scholar
  9. 9.
    G. Stansel, Phys. Lett. A 47, 283 (1974).ADSGoogle Scholar
  10. 10.
    N. G. Lukomskii, V. A. Polishchuk, and M. P. Chaika, Opt. Spektrosk. 58, 474 (1985) [Opt. Spectrosc. 58, 284 (1985)].Google Scholar
  11. 11.
    N. G. Lukomskii, V. A. Polishchuk, M. P. Chaika, and E. N. Amplieva, Opt. Spektrosk. 83, 420 (1997) [Opt. Spectrosc. 83, 393 (1997)].Google Scholar
  12. 12.
    M. P. Chaika, Interference of Degenerate Atomic States (Leningr. Gos. Univ., Leningrad, 1975).Google Scholar
  13. 13.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 96, 457 (1989) [Sov. Phys. JETP 69, 258 (1989)].Google Scholar
  14. 14.
    B. A. Veklenko, R. B. Gusarov, and Yu. B. Sherkunov, Zh. Éksp. Teor. Fiz. 113, 521 (1998) [JETP 86, 289 (1998)].Google Scholar
  15. 15.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Gostekhizdat, Moscow, 1962; Prentice-Hall, Englewood Cliffs, 1963).Google Scholar
  16. 16.
    V. Korenmann, Ann. Phys. (N. Y.) 39, 72 (1962).Google Scholar
  17. 17.
    B. A. Veklenko and G. B. Tkachuk, Opt. Spektrosk. 38, 1132 (1975) [Opt. Spectrosc. 38, 653 (1975)].Google Scholar
  18. 18.
    I. B. Levinson, Zh. Éksp. Teor. Fiz. 75, 234 (1978) [Sov. Phys. JETP 48, 117 (1978)].ADSGoogle Scholar
  19. 19.
    H. R. Zaidi, Can. J. Phys. 59, 737 (1981); 59, 750 (1981).ADSGoogle Scholar
  20. 20.
    A. A. Panteleev, V. A. Roslyakov, A. N. Starostin, and M. D. Taran, Zh. Éksp. Teor. Fiz. 97, 1777 (1990) [Sov. Phys. JETP 70, 1003 (1990)].Google Scholar
  21. 21.
    S. Fujita, Physika 28, 281 (1962).zbMATHGoogle Scholar
  22. 22.
    I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience, New York, 1962; Mir, Moscow, 1964).Google Scholar
  23. 23.
    M. O. Scally and W. E. Lamb, Phys. Rev. 159, 208 (1967).ADSGoogle Scholar
  24. 24.
    L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1964)].Google Scholar
  25. 25.
    J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Syracuse University, NewYork-Amsterdam, 1968; Mir, Moscow, 1970).Google Scholar
  26. 26.
    A. S. Davydov, Quantum Mechanics (Fizmatgiz, Moscow, 1963; Pergamon, Oxford, 1976).Google Scholar
  27. 27.
    B. A. Veklenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 132 (1987).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • B. A. Veklenko
    • 1
  1. 1.Moscow Power InstituteMoscowRussia

Personalised recommendations