Mesoscopic Casimir forces in quantum vacuum

  • G. E. Volovik
Gravity, Astrophysics


Traditionally, it is assumed that the Casimir vacuum pressure does not depend on the ultraviolet cutoff. There are, however, some arguments that the effect actually depends on the regularization procedure and thus on trans-Planckian physics. We provide the condensed matter example where the Casimir forces do explicitly depend on microscopic (correspondingly trans-Planckian) physics due to the mesoscopic finite-N effects, where N is the number of bare particles in condensed matter (or correspondingly the number of elements comprising the quantum vacuum). The finite-N effects lead to mesoscopic fluctuations of the vacuum pressure. The amplitude of the mesoscopic fluctuations of the Casimir force in a system with linear dimension L is a factor of N1/3L/a p larger than the traditional value of the Casimir force given by effective theory, where a p =ℏ/p p is the interatomic distance which plays the role of the Planck length.

PACS numbers

67.20.+k 11.10.−z 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).zbMATHGoogle Scholar
  2. 2.
    G. Esposito, A. Yu. Kamenshchik, and K. Kirsten, Int. J. Mod. Phys. A 14, 281 (1999); Phys. Rev. D 62, 085027 (2000).ADSGoogle Scholar
  3. 3.
    F. Ravndal, hep-ph/0009208.Google Scholar
  4. 4.
    H. Falomir, K. Kirsten, and K. Rebora, hep-th/0103050.Google Scholar
  5. 5.
    K. A. Milton, hep-th/0009173.Google Scholar
  6. 6.
    G. Cognola, E. Elizalde, and K. Kirsten, hep-th/9906228.Google Scholar
  7. 7.
    C. R. Hagen, quant-ph/0102135; Phys. Rev. D 61, 065005 (2000).Google Scholar
  8. 8.
    M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    G. E. Volovik, Phys. Rep. (in press); gr-qc/0005091.Google Scholar
  10. 10.
    G. E. Volovik, gr-qc/0101111.Google Scholar
  11. 11.
    R. D. M. De Paola, R. B. Rodríguez, and N. F. Svaiter, Mod. Phys. Lett. A 14, 2353 (1999).ADSGoogle Scholar
  12. 12.
    A. F. Andreev, Usp. Fiz. Nauk 168, 655 (1998) [Phys. Usp. 41, 581 (1998)].Google Scholar
  13. 13.
    R. Jackiw, Int. J. Mod. Phys. B 14, 2011 (2000).ADSGoogle Scholar
  14. 14.
    M. Perez-Victoria, hep-th/0102021.Google Scholar
  15. 15.
    G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 70, 1 (1999) [JETP Lett. 70, 1 (1999)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations