Robustness of the inflationary perturbation spectrum to trans-Planckian physics

  • A. A. Starobinsky
Gravity, Astrophysics


It is inspected whether the predictions of the inflationary scenario regarding the spectra of scalar and tensor perturbations generated by quantum vacuum fluctuations are robust with respect to the modification of the dispersion law for frequencies beyond the Planck scale. For a large class of such modifications of special and general relativity, for which the WKB condition is not violated at ultrahigh frequencies, the predictions remain unchanged. The opposite possibility is excluded because of the absence of a large amount of particles created due to the Universe expansion. The creation of particles in the quantum state minimizing the energy density of a given mode at the moment of Planck boundary crossing is also prohibited by the latter argument (contrary to the creation in the adiabatic vacuum state, which is very small now).

PACS numbers

04.62.+v 98.70.Vc 98.80.Cq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 30, 719 (1979) [JETP Lett. 30, 682 (1979)].Google Scholar
  2. 2.
    S. W. Hawking, Phys. Lett. B 115B, 295 (1982); A. A. Starobinsky, Phys. Lett. B 117B, 175 (1982); A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).ADSGoogle Scholar
  3. 3.
    V. N. Lukash, Zh. Éksp. Teor. Fiz. 79, 1601 (1980) [Sov. Phys. JETP 52, 807 (1980)].ADSMathSciNetGoogle Scholar
  4. 4.
    V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Éksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].Google Scholar
  5. 5.
    A. A. Starobinsky, Phys. Lett. B 91B, 99 (1980).ADSGoogle Scholar
  6. 6.
    T. Tanaka, astro-ph/0012431 (2000).Google Scholar
  7. 7.
    J. C. Niemeyer and R. Parentani, astro-ph/0101451 (2001).Google Scholar
  8. 8.
    W. G. Unruh, Phys. Rev. D 51, 2827 (1995).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Brout, S. Massar, R. Parentani, and P. Spindel, Phys. Rev. D 52, 4559 (1995).ADSGoogle Scholar
  10. 10.
    S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. H. Brandenberger and J. Martin, astro-ph/0005432 (2000); J. Martin and R. H. Brandenberger, hep-th/0005209 (2000).Google Scholar
  12. 12.
    D. J. H. Chung, E. W. Kolb, and A. Riotto, hep-ph/0008126 (2000).Google Scholar
  13. 13.
    G. E. Volovik, Phys. Rep. (2001) (in press); gr-qc/0005091 (2000).Google Scholar
  14. 14.
    G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 73, 182 (2001) [JETP Lett. 73, 162 (2001)]; hep-ph/0101286 (2001).Google Scholar
  15. 15.
    J. Kowalski-Glikman, Phys. Lett. B 499, 1 (2001).ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    L. Mersini, M. Bastero-Gil, and P. Kanti, hep-ph/0101210 (2001).Google Scholar
  17. 17.
    Ya. B. Zeldovich and A. A. Starobinsky, Zh. Éksp. Teor. Fiz. 61, 2161 (1971) [Sov. Phys. JETP 34, 1159 (1972)].Google Scholar
  18. 18.
    S. A. Fulling, L. Parker, and B. L. Hu, Phys. Rev. D 10, 3905 (1974).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ya. B. Zeldovich and A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 26, 373 (1977) [JETP Lett. 26, 252 (1977)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • A. A. Starobinsky
    • 1
    • 2
  1. 1.Research Center for the Early UniverseThe University of TokyoTokyoJapan
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations