Optics and Spectroscopy

, Volume 90, Issue 5, pp 743–752 | Cite as

New recursive solution of the problem of scattering of electromagnetic radiation by multilayer spheroidal particles

  • V. G. Farafonov
Physical and Quantum Optics

Abstract

A new recursive algorithm for the solution of the problem of scattering of light (of an arbitrarily polarized plane electromagnetic wave) by multilayer confocal spheroidal particles is constructed. This approach preserves the advantages of the two approaches proposed earlier by us for single-layer and two-layer spheroids (special choice of scalar potentials and utilization of the basis of wave spheroidal harmonics) and for homogeneous axially symmetric particles (formulation of the problem in terms of surface integral equations, calculation of the potentials inside the particle from the potentials of the incident radiation, and calculation of the potentials of the scattered radiation from the potentials inside the particle). In the case of multilayer particles, the potential inside each shell is a sum of two terms. The first has the properties of the incident radiation (no singularities inside the volume enclosed by the external boundary of the shell), whereas the second term has the properties of the scattered radiation (satisfies the radiation conditions at infinity). Therefore, as the calculation progresses from one layer to the next (from the core to the outer shell), the dimensionality of the reduced linear matrix equations for the unknown expansion coefficients of the scattered field potentials does not increase with respect to the case of a homogeneous spheroid. The algorithm is particularly simple and lucid (as far as possible for such a complex problem). In the case of spherical multilayer particles, the solution can be found explicitly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).Google Scholar
  2. 2.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystalline Clouds (Gidrometeoizdat, Leningrad, 1984).Google Scholar
  3. 3.
    V. N. Lopatin and F. Ya. Sid’ko, Introduction to the Optics of Cell Suspensions (Nauka, Novosibirsk, 1988).Google Scholar
  4. 4.
    T. Onaka, Ann. Tokyo Astron. Obs. 18, 1 (1980).ADSGoogle Scholar
  5. 5.
    M. F. R. Cooray and I. R. Ciric, J. Electromagn. Waves Appl. 6, 1491 (1992).CrossRefGoogle Scholar
  6. 6.
    V. G. Farafonov, Opt. Spektrosk. 76, 87 (1994) [Opt. Spectrosc. 76, 79 (1994)].ADSGoogle Scholar
  7. 7.
    V. G. Farafonov, N. V. Voshchinnikov, and V. V. Somsikov, Appl. Opt. 35, 5412 (1996).ADSGoogle Scholar
  8. 8.
    B. Peterson and S. Strim, Phys. Rev. D 10, 2670 (1974).CrossRefADSGoogle Scholar
  9. 9.
    D.-S. Wang and P. W. Barber, Appl. Opt. 18, 1190 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    Light Scattering by Non-spherical Particles, Ed. by M. I. Mishchenko, J. W. Hovenier, and L. D. Trayis (Academic, New York, 2000).Google Scholar
  11. 11.
    V. G. Farafonov, Dif. Uravn. 19, 1765 (1983).MathSciNetGoogle Scholar
  12. 12.
    N. V. Voshchinnikov, J. Quant. Spectrosc. Radiat. Transf. 55, 627 (1996).CrossRefADSGoogle Scholar
  13. 13.
    I. Gurwich, M. Kleiman, N. Shiloag, and A. Cohen, Appl. Opt. 39, 470 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    Z. S. Wu and Y. P. Wang, Radio Sci. 26, 1393 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    V. G. Farafonov, Opt. Spektrosk. 88, 70 (2000) [Opt. Spectrosc. 88, 63 (2000)].ADSGoogle Scholar
  16. 16.
    V. G. Farafonov, V. B. Il’in, and T. Henning, J. Quant. Spectrosc. Radiat. Transf. 63, 205 (1999).CrossRefADSGoogle Scholar
  17. 17.
    N. V. Voshchinnikov and V. G. Farafonov, Astrophys. Space Sci. 204, 19 (1993).CrossRefADSGoogle Scholar
  18. 18.
    V. G. Farafonov and N. V. Voshchinnikov, Opt. Spektrosk. 81, 660 (1996) [Opt. Spectrosc. 81, 602 (1996)].Google Scholar
  19. 19.
    V. G. Farafonov and N. V. Voshchinnikov, Opt. Spektrosk. 83, 973 (1997) [Opt. Spectrosc. 83, 899 (1997)].Google Scholar
  20. 20.
    V. G. Farafonov, V. B. Il’in, T. Henning, et al., J. Quant. Spectrosc. Radiat. Transf. 65, 877 (2000).CrossRefADSGoogle Scholar
  21. 21.
    V. I. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976).Google Scholar
  22. 22.
    D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984; Mir, Moscow, 1987).Google Scholar
  23. 23.
    V. G. Farafonov, Opt. Spektrosk. 69, 866 (1990) [Opt. Spectrosc. 69, 514 (1990)].Google Scholar
  24. 24.
    V. G. Farafonov, Opt. Spektrosk. 77, 455 (1994) [Opt. Spectrosc. 77, 402 (1994)].Google Scholar
  25. 25.
    N. V. Voshchinnikov and V. G. Farafonov, Opt. Spektrosk. 88, 78 (2000) [Opt. Spectrosc. 88, 71 (2000)].CrossRefADSGoogle Scholar
  26. 26.
    V. G. Farafonov, Opt. Spektrosk. 88, 492 (2000) [Opt. Spectrosc. 88, 441 (2000)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • V. G. Farafonov
    • 1
  1. 1.State University of Aerospace EngineeringSt. PetersburgRussia

Personalised recommendations