Advertisement

Physics of the Solid State

, Volume 43, Issue 5, pp 811–817 | Cite as

Calculation of the thermal effect of an electron probe on a sample of GaN

  • L. A. Bakaleinikov
  • E. V. Galaktionov
  • V. V. Tret’yakov
  • É. A. Tropp
Semiconductors and Dielectrics

Abstract

Stationary temperature fields due to the interaction of an electron probe with a GaN sample are examined. In order to calculate the density of generated heat, the process of electron energy loss is modeled by the Monte Carlo method. The heat generation region is assumed to have the shape of a half-ellipsoid. In the case of uniform heat generation in the ellipsoid, an analytical solution to the heat conduction problem is found and expressed in terms of elementary functions. It is shown that the maximum heating temperature and the temperature field distribution depend only slightly on the shape of the heat generation region. An approximation of the density of heat sources by a uniform distribution over a hemisphere of radius equal to the ultimate range of electrons leads to a considerably underestimated maximum heating temperature. An expression is derived for determining the characteristic size of the heat generation region in GaN; this expression allows one to calculate the maximum heat temperature with an accuracy of 3% in a wide range of electron beam energies.

Keywords

Monte Carlo Method Heat Source Temperature Field Heat Generation Beam Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Castaing, Adv. Electron. Electron Phys. 13, 317 (1960).Google Scholar
  2. 2.
    G. S. Almasi, J. Blair, R. E. Ogilvie, and R. J. Schwartz, J. Appl. Phys. 36(6), 1848 (1965).CrossRefGoogle Scholar
  3. 3.
    C. F. Friskney and C. W. Haworth, J. Appl. Phys. 38(9), 3796 (1967).CrossRefGoogle Scholar
  4. 4.
    H. Amano, M. Kito, K. Hiromatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28(12), L2112 (1989).Google Scholar
  5. 5.
    S. K. Obyden, G. A. Perlovskii, G. V. Saparin, and S. I. Popov, Izv. Akad. Nauk SSSR, Ser. Fiz. 48(12), 2374 (1984).Google Scholar
  6. 6.
    I. G. Stoyanova and E. M. Belavtseva, Izv. Akad. Nauk SSSR, Ser. Fiz. 23(6), 754 (1959).Google Scholar
  7. 7.
    I. G. Stoyanova and I. V. Anaskin, Physical Foundations of Transmission Electron Microscopy Methods (Nauka, Moscow, 1972).Google Scholar
  8. 8.
    V. N. Korolyuk and Yu. G. Lavrent’ev, in X-ray Microanalysis with Electron Probe in Mineralogy (Nauka, Leningrad, 1980), p. 7.Google Scholar
  9. 9.
    M. N. Filippov, Izv. Akad. Nauk, Ser. Fiz. 57(8), 165 (1993).Google Scholar
  10. 10.
    T. E. Everhart and P. H. Hoff, J. Appl. Phys. 42(13), 5837 (1971).CrossRefGoogle Scholar
  11. 11.
    Electron Database, http://www.ioffe.rssi.ru/ES.
  12. 12.
    T. Rao-Sahib and D. B. Wittry, J. Appl. Phys. 45(11), 5060 (1974).CrossRefGoogle Scholar
  13. 13.
    H.-J. Fitting, H. Glaefeke, and W. Wild, Phys. Status Solidi A 43(1), 185 (1977).Google Scholar
  14. 14.
    S. G. Konnikov, V. A. Solov’ev, V. E. Umanskii, and V. M. Chistyakov, Fiz. Tekh. Poluprovodn. (Leningrad) 21(11), 2028 (1987) [Sov. Phys. Semicond. 21, 1229 (1987)].Google Scholar
  15. 15.
    N. N. Lebedev, I. P. Skal’skaya, and Ya. S. Uflyand, Collection of Problems of Mathematical Physics (Moscow, 1955).Google Scholar
  16. 16.
    K. Kanaya and S. Okayama, J. Phys. D 5(1), 43 (1972).CrossRefADSGoogle Scholar
  17. 17.
    J. I. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis (Plenum, New York, 1981; Mir, Moscow, 1984).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • L. A. Bakaleinikov
    • 1
  • E. V. Galaktionov
    • 1
  • V. V. Tret’yakov
    • 1
  • É. A. Tropp
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations