Advertisement

Physics of Atomic Nuclei

, Volume 64, Issue 4, pp 652–669 | Cite as

Soft modes, resonances, and quantum transport

  • Yu. B. Ivanov
  • J. Knoll
  • H. van Hees
  • D. N. Voskresensky
90th Anniversary of A.B. Migdal's Birthday Nuclei

Abstract

Effects of the propagation of particles that have a finite lifetime and an according width in their mass spectrum are discussed in the context of transport description. First, the importance of coherence effects (Landau-Pomeranchuk-Migdal effect) on the production and absorption of field quanta in nonequilibrium dense matter is considered. It is shown that classical diffusion and Langevin results correspond to a resummation of certain field-theory diagrams formulated in terms of full nonequilibrium Green's functions. General properties of broad resonances in dense and hot systems are discussed in the framework of a self-consistent and conserving Φ-derivable method of Baym by considering the examples of the ρ meson in hadronic matter and the pion in dilute nuclear matter. Further, we address the problem of a transport description that properly takes into account the damping width of the particles. The Φ-derivable method generalized to the real-time contour provides a selfconsistent and conserving kinetic scheme. We derive a generalized expression for the nonequilibrium kinetic entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases, an H theorem is proven. Memory effects in collision terms contribute to the kinetic entropy flow that, in the Fermi liquid case, reproduces the famous bosonic-type T 3lnT correction to the specific heat of liquid 3He. For the example of the pion-condensate phase transition in dense nuclear matter, we demonstrate the important role of the width effects within the quantum transport.

Keywords

Memory Effect Nuclear Matter Soft Mode Fermi Liquid Quantum Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)].Google Scholar
  2. 2.
    V. M. Galitskii and A. B. Migdal, Zh. Éksp. Teor. Fiz. 34, 139 (1958) [Sov. Phys. JETP 7, 96 (1958)].MathSciNetGoogle Scholar
  3. 3.
    A. B. Migdal, Nuclear Theory; the Quasiparticle Method (Nauka, Moscow, 1967; Benjamin, New York, 1968); Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Wiley, New York, 1967).Google Scholar
  4. 4.
    E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1978; Pergamon, Oxford, 1980), Part 2.Google Scholar
  5. 5.
    A. B. Migdal, Zh. Éksp. Teor. Fiz. 61, 2209 (1971) [Sov. Phys. JETP 34, 1184 (1972)].Google Scholar
  6. 6.
    A. B. Migdal, Zh. Éksp. Teor. Fiz. 63, 1993 (1972) [Sov. Phys. JETP 36, 1052 (1973)].Google Scholar
  7. 7.
    A. B. Migdal, Phys. Rev. Lett. 31, 257 (1973); Nucl. Phys. A 210, 421 (1973); Phys. Lett. B 47B, 96 (1973); 52B, 172 (1974); 52B, 264 (1974).CrossRefADSGoogle Scholar
  8. 8.
    A. B. Migdal, Rev. Mod. Phys. 50, 107 (1978).CrossRefADSGoogle Scholar
  9. 9.
    A. B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N. Voskresensky, Phys. Rep. 192, 179 (1990).ADSGoogle Scholar
  10. 10.
    D. N. Voskresensky, Nucl. Phys. A 555, 293 (1993).ADSGoogle Scholar
  11. 11.
    L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 553 (1953); 92, 735 (1953); in Collected Papers of Landau, Ed. by Ter Haar (Gordon and Breach, New York, 1965), Papers 75–77.Google Scholar
  12. 12.
    A. B. Migdal, Phys. Rev. 103, 1811 (1956); Zh. Éksp. Teor. Fiz. 32, 633 (1957) [Sov. Phys. JETP 5, 527 (1957)].CrossRefzbMATHADSGoogle Scholar
  13. 13.
    P. L. Anthony et al., Phys. Rev. Lett. 75, 1949 (1995); S. Klein, Rev. Mod. Phys. 71, 1501 (1999).CrossRefADSGoogle Scholar
  14. 14.
    J. Schwinger, J. Math. Phys. 2, 407 (1961).CrossRefMathSciNetzbMATHADSGoogle Scholar
  15. 15.
    L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).zbMATHGoogle Scholar
  16. 16.
    L. P. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].Google Scholar
  17. 17.
    G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).CrossRefMathSciNetADSzbMATHGoogle Scholar
  18. 18.
    G. Baym, Phys. Rev. 127, 1391 (1962).CrossRefMathSciNetzbMATHADSGoogle Scholar
  19. 19.
    J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).CrossRefMathSciNetADSzbMATHGoogle Scholar
  20. 20.
    A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Dover, New York, 1975).Google Scholar
  21. 21.
    Yu. B. Ivanov, J. Knoll, and D. N. Voskresensky, Nucl. Phys. A 657, 413 (1999).ADSGoogle Scholar
  22. 22.
    Yu. B. Ivanov, J. Knoll, and D. N. Voskresensky, Nucl. Phys. A 672, 313 (2000).ADSGoogle Scholar
  23. 23.
    J. Knoll and D. N. Voskresensky, Ann. Phys. (N. Y.) 249, 532 (1996); Phys. Lett. B 351, 43 (1995).CrossRefADSGoogle Scholar
  24. 24.
    H. van Hees and J. Knoll, in Proceedings of the International Workshop XXVIII on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, 2000, Ed. by M. Buballa et al., p. 177; hep-ph/0002087; hep-ph/0007070; Nucl. Phys. A (in press).Google Scholar
  25. 25.
    W. Weinhold, B. L. Friman, and W. Nörenberg, Acta Phys. Pol. B 27, 3249 (1996); Phys. Lett. B 433, 236 (1998).Google Scholar
  26. 26.
    J. Knoll and C. Guet, Nucl. Phys. A 494, 334 (1989); M. Durand and J. Knoll, Nucl. Phys. A 496, 539 (1989).ADSGoogle Scholar
  27. 27.
    D. N. Voskresensky and A. V. Senatorov, Yad. Fiz. 45, 657 (1987) [Sov. J. Nucl. Phys. 45, 411 (1987)].Google Scholar
  28. 28.
    J. Knoll, in Proceedings of the Erice School on Nuclear Physics, Erice, 1998; Prog. Part. Nucl. Phys. 42, 177 (1999).Google Scholar
  29. 29.
    M. Herrmann, B. L. Friman, and W. Nörenberg, Nucl. Phys. A 560, 411 (1993).ADSGoogle Scholar
  30. 30.
    R. Rapp, G. Chanfray, and J. Wambach, Nucl. Phys. A 617, 472 (1997).ADSGoogle Scholar
  31. 31.
    S. Leupold and U. Mosel, Phys. Rev. C 58, 2939 (1998).CrossRefADSGoogle Scholar
  32. 32.
    F. Klingl, N. Kaiser, and W. Weise, Nucl. Phys. A 624, 527 (1997).ADSGoogle Scholar
  33. 33.
    B. L. Friman and H.-J. Pirner, Nucl. Phys. A 617, 496 (1997).ADSGoogle Scholar
  34. 34.
    B. Friman, M. Lutz, and G. Wolf, nucl-th/9811040; in Proceedings of the “Baryons 98”, Bonn, 1998 (World Sci., Singapore, 1999), p. 663; in Proceedings of the International Workshop XXVIII on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, 2000; nuclth/ 0003012.Google Scholar
  35. 35.
    P. Danielewicz and G. F. Bertsch, Nucl. Phys. A 533, 712 (1991).ADSGoogle Scholar
  36. 36.
    M. Effenberger, E. L. Bratkovskaya, and U. Mosel, Phys. Rev. C 60, 051901 (1999).Google Scholar
  37. 37.
    M. Effenberger, E. L. Bratkovskaya, W. Cassing, and U. Mosel, Phys. Rev. C 60, 027601 (1999).Google Scholar
  38. 38.
    E. Beth and G. E. Uhlenbeck, Physica (Amsterdam) 4, 915 (1937).ADSGoogle Scholar
  39. 39.
    K. Huang, Statistical Mechanics (Wiley, New York, 1963; Mir, Moscow, 1966).Google Scholar
  40. 40.
    R. Dashen, S. Ma, and H. J. Bernstein, Phys. Rev. 187, 345 (1969).ADSzbMATHGoogle Scholar
  41. 41.
    A. Z. Mekjian, Phys. Rev. C 17, 1051 (1978).CrossRefADSGoogle Scholar
  42. 42.
    R. Venugopalan and M. Prakash, Nucl. Phys. A 546, 718 (1992).ADSGoogle Scholar
  43. 43.
    W. Lenz, Z. Phys. 56, 778 (1929).zbMATHADSGoogle Scholar
  44. 44.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, Oxford, 1977, 3rd ed.).Google Scholar
  45. 45.
    C. B. Dover, J. Hüfner, and R. H. Lemmer, Ann. Phys. (N. Y.) 66, 248 (1971).CrossRefADSGoogle Scholar
  46. 46.
    M. Lutz, A. Steiner, and W. Weise, Nucl. Phys. A 574, 755 (1994).ADSGoogle Scholar
  47. 47.
    P. Danielewicz and S. Pratt, Phys. Rev. C 53, 249 (1996).CrossRefADSGoogle Scholar
  48. 48.
    W. Botermans and R. Malfliet, Phys. Rep. 198, 115 (1990).CrossRefADSGoogle Scholar
  49. 49.
    S. Leupold, Nucl. Phys. A 672, 475 (2000).ADSGoogle Scholar
  50. 50.
    W. Cassing and S. Juchem, Nucl. Phys. A 672, 417 (2000).ADSGoogle Scholar
  51. 51.
    B. Bezzerides and D. F. DuBois, Ann. Phys. (N. Y.) 70, 10 (1972).CrossRefADSGoogle Scholar
  52. 52.
    P. Lipavsky, V. Spicka, and B. Velicky, Phys. Rev. B 34, 6933 (1986).ADSGoogle Scholar
  53. 53.
    V. Spicka and P. Lipavsky, Phys. Rev. Lett. 73, 3439 (1994); Phys. Rev. B 52, 14615 (1995).ADSCrossRefGoogle Scholar
  54. 54.
    W. D. Kraeft, D. Kremp, W. Ebelong, and G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986).Google Scholar
  55. 55.
    M. Bonitz, Quantum Kinetic Theory (Teubner, Stuttgart/Leipzig, 1998).Google Scholar
  56. 56.
    Th. Bornath, D. Kremp, W. D. Kraeft, and M. Schlanges, Phys. Rev. E 54, 3274 (1996).CrossRefADSGoogle Scholar
  57. 57.
    M. Schönhofen, M. Cubero, B. Friman, et al., Nucl. Phys. A 572, 112 (1994).ADSGoogle Scholar
  58. 58.
    S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799 (1996).CrossRefADSGoogle Scholar
  59. 59.
    D. N. Voskresensky, D. Blaschke, G. Röpke, and H. Schulz, Int. J. Mod. Phys. E 4, 1 (1995).ADSGoogle Scholar
  60. 60.
    J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 2428 (1974).ADSzbMATHGoogle Scholar
  61. 61.
    G. Baym and C. Pethick, Landau Fermi-Liquid Theory (Wiley, New York, 1991).Google Scholar
  62. 62.
    G. M. Carneiro and C. J. Pethick, Phys. Rev. B 11, 1106 (1975).CrossRefADSGoogle Scholar
  63. 63.
    A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998).CrossRefADSGoogle Scholar
  64. 64.
    A. M. Dyugaev, Pis'ma Zh. Éksp. Teor. Fiz. 22, 181 (1975) [JETP Lett. 22, 83 (1975)].Google Scholar
  65. 65.
    D. N. Voskresensky and I. N. Mishustin, Pis'ma Zh. Éksp. Teor. Fiz. 34, 317 (1981) [JETP Lett. 34, 303 (1981)]; Yad. Fiz. 35, 1139 (1982) [Sov. J. Nucl. Phys. 35, 667 (1982)].Google Scholar
  66. 66.
    A. M. Dyugaev, Pis'ma Zh. Éksp. Teor. Fiz. 35, 341 (1982) [JETP Lett. 35, 420 (1982)]; Zh. Éksp. Teor. Fiz. 83, 1005 (1982) [Sov. Phys. JETP 56, 567 (1982)]; Yad. Fiz. 38, 1131 (1983) [Sov. J. Nucl. Phys. 38, 680 (1983)].Google Scholar
  67. 67.
    D. Campbell, R. Dashen, and J. Manassash, Phys. Rev. D 12, 979 (1975); 12, 1010 (1975).ADSGoogle Scholar
  68. 68.
    S. Ayik and C. Gregoire, Phys. Lett. B 212, 269 (1988); Nucl. Phys. A 513, 187 (1990).ADSGoogle Scholar
  69. 69.
    J. Randrup and B. Remaud, Nucl. Phys. A 514, 339 (1990).ADSGoogle Scholar
  70. 70.
    Yu. B. Ivanov and S. Ayik, Nucl. Phys. A 593, 233 (1995).ADSGoogle Scholar
  71. 71.
    C. Greiner and S. Leupold, Ann. Phys. (N. Y.) 270, 328 (1998).CrossRefMathSciNetADSzbMATHGoogle Scholar
  72. 72.
    H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14 (1985).CrossRefADSGoogle Scholar
  73. 73.
    B. Vanderheyden and G. Baym, J. Stat. Phys. 93, 843 (1998).CrossRefzbMATHADSGoogle Scholar
  74. 74.
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).CrossRefADSGoogle Scholar
  75. 75.
    L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • Yu. B. Ivanov
    • 1
  • J. Knoll
    • 1
  • H. van Hees
    • 1
  • D. N. Voskresensky
    • 1
  1. 1.Gesellschaft für Schwerionenforschung mbHDarmstadtGermany

Personalised recommendations