Journal of Experimental and Theoretical Physics

, Volume 92, Issue 3, pp 454–461

An analysis of acoustic oscillations in dust plasma structures

  • A. A. Samaryan
  • A. V. Chernyshev
  • O. F. Petrov
  • A. P. Nefedov
  • V. E. Fortov
Plasma, Gases

Abstract

Low-frequency oscillations in the density of dust particles, which are spontaneously excited in the standing plasma column of a dc glow discharge in neon, were experimentally studied. The longitudinal waves were monitored by a special visualization technique, and the dust sound oscillation characteristics were determined and analyzed using specially developed algorithm and data processing software. It was established that the longitudinal waves propagate from anode to cathode, the frequency and wavevector of the dust sound oscillations being dependent on the discharge current, gas pressure, particle density in the dust cloud, and spatial coordinates. Two-dimensional (2D) fields of the main wave characteristics were studied using an original algorithm. The possible mechanisms of excitation of the dust sound oscillations is discussed. The experimental spatial distributions of the wave parameters are compared to the patterns obtained within the framework of various theoretical models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).CrossRefADSGoogle Scholar
  2. 2.
    V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].Google Scholar
  3. 3.
    R. Varma, P. K. Shukla, and V. Krishan, Phys. Rev. E 47, 3612 (1993).CrossRefADSGoogle Scholar
  4. 4.
    V. Jana, A. Sen, and P. K. Kaw, Phys. Rev. E 48, 3930 (1993).CrossRefADSGoogle Scholar
  5. 5.
    M. Rosenberg, Planet. Space Sci. 41, 229 (1993).CrossRefADSGoogle Scholar
  6. 6.
    M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996).CrossRefADSGoogle Scholar
  7. 7.
    N. Rao, J. Plasma Phys. 59, 561 (1998).CrossRefADSGoogle Scholar
  8. 8.
    Y. Ma and J. Liu, Phys. Plasmas 4, 253 (1997).CrossRefADSGoogle Scholar
  9. 9.
    D. Winske and M. Rosenberg, IEEE Trans. Plasma Sci. 26, 92 (1998).CrossRefGoogle Scholar
  10. 10.
    M. Rosenberg and G. Kalman, Phys. Rev. E 56, 7166 (1997).CrossRefADSGoogle Scholar
  11. 11.
    M. Murillo, Phys. Plasmas 5, 3116 (1998).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    D. Winske, M. S. Murillo, and M. Rosenberg, Phys. Rev. E 59, 2263 (1999).CrossRefADSGoogle Scholar
  13. 13.
    P. Shukla and G. Morfill, Phys. Lett. A 216, 153 (1996).CrossRefADSGoogle Scholar
  14. 14.
    F. Melandso, Phys. Plasmas 3, 3890 (1996).ADSGoogle Scholar
  15. 15.
    N. D’Angelo, Phys. Plasmas 5, 3155 (1998).ADSGoogle Scholar
  16. 16.
    A. Ivlev, D. Samsonov, J. Goree, et al., Phys. Plasmas 6, 741 (1999).ADSGoogle Scholar
  17. 17.
    A. Ivlev, G. Morfill, and J. R. Jokipii, Phys. Rev. Lett. 83, 971 (1999).ADSGoogle Scholar
  18. 18.
    K. N. Ostrikov, S. V. Vladimirov, M. Y. Yu, and G. E. Morfill, Phys. Plasmas 7, 461 (2000).CrossRefADSGoogle Scholar
  19. 19.
    M. Zuzic, H. Tomas, and G. Morfill, J. Vac. Sci. Technol. A 14, 496 (1996).CrossRefADSGoogle Scholar
  20. 20.
    J. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).CrossRefADSGoogle Scholar
  21. 21.
    A. Homann, A. Melzer, R. Madani, and A. Piel, Phys. Lett. A 242, 173 (1998).CrossRefADSGoogle Scholar
  22. 22.
    A. Barkan, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 2, 3563 (1995).ADSGoogle Scholar
  23. 23.
    V. I. Molotkov, A. P. Nefedov, V. M. Torchinskii, et al., Zh. Éksp. Teor. Fiz. 116, 902 (1999) [JETP 89, 477 (1999)].Google Scholar
  24. 24.
    R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).CrossRefADSGoogle Scholar
  25. 25.
    H. R. Prabhakara and V. L. Tana, Phys. Plasmas 3, 3176 (1996).CrossRefADSGoogle Scholar
  26. 26.
    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Phys. Plasmas 7, 1374 (2000).CrossRefADSGoogle Scholar
  27. 27.
    A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, et al., Zh. Éksp. Teor. Fiz. 112, 2030 (1997) [JETP 85, 1110 (1997)].Google Scholar
  28. 28.
    Yu. B. Golubovskii, S. U. Nisimov, and I. E. Suleimenov, Zh. Tekh. Fiz. 64(10), 54 (1994) [Tech. Phys. 39, 1005 (1994)]; Yu. B. Golubovskii and S. U. Nisimov, Zh. Tekh. Fiz. 65 (1), 46 (1995) [Tech. Phys. 40, 24 (1995)].Google Scholar
  29. 29.
    J. E. Allen, Phys. Scr. 45, 497 (1992).ADSGoogle Scholar
  30. 30.
    O. M. Belotserkovskii, I. E. Zakharov, A. P. Nefedov, et al., Zh. Éksp. Teor. Fiz. 115, 819 (1999) [JETP 88, 449 (1999)].Google Scholar
  31. 31.
    V. Tsytovich, S. Benkada, and S. Vladimirov, Plasma Phys. Controlled Fusion 34, 123 (1999).Google Scholar
  32. 32.
    G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).Google Scholar
  33. 33.
    R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982; Mir, Moscow, 1988).Google Scholar
  34. 34.
    T. Akhromeeva, S. Kurdyumov, and G. Malinetskii, in Computers and Nonlinear Phenomena (Nauka, Moscow, 1988), p. 44.Google Scholar
  35. 35.
    O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Zh. Éksp. Teor. Fiz. 118, 1325 (2000) [JETP 91, 1147 (2000)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • A. A. Samaryan
    • 1
  • A. V. Chernyshev
    • 1
  • O. F. Petrov
    • 1
  • A. P. Nefedov
    • 1
  • V. E. Fortov
    • 1
  1. 1.Institute for High Energy DensitiesRussian Academy of SciencesMoscowRussia

Personalised recommendations