Doklady Physics

, Volume 46, Issue 3, pp 184–189 | Cite as

Overlapping of frequency curves in nonconservative systems

  • O. N. Kirillov
  • A. P. Seyranian


Frequency Curve Nonconservative System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Claudon, J. Mech. 14, 531 (1975).zbMATHGoogle Scholar
  2. 2.
    M. Hanaoka and K. Washizu, Comput. Struct. 11, 473 (1980).CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. N. Kounadis and J. T. Katsikadelis, Int. J. Solids Struct. 16, 375 (1980).MathSciNetGoogle Scholar
  4. 4.
    M. A. Langthjem and Y. Sugiyama, J. Sound Vib. 226, 1 (1999).CrossRefADSGoogle Scholar
  5. 5.
    H. Ziegler, Principles of Structural Stability (Blaisdell, Waltham, Mass., 1968).Google Scholar
  6. 6.
    V. V. Bolotin, Nonconservative Problems in Theory of Elastic Stability (Pergamon Press, Oxford, 1963).Google Scholar
  7. 7.
    V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York and Berlin, 1983).Google Scholar
  8. 8.
    A. P. Seyranian, Izv. Ross. Acad. Nauk, Mekh. Tverd. Tela 29(1), 142 (1994).Google Scholar
  9. 9.
    O. N. Kirillov and A. P. Seyranian, On the Stability Boundaries of Circulatory Systems (Moscow State Univ., Inst. of Mechanics, 1999, Preprint No. 51-99).Google Scholar
  10. 10.
    M. I. Vishik and L. A. Lyusternik, Russ. Math. Surveys 15(3), 3 (1960).CrossRefMathSciNetGoogle Scholar
  11. 11.
    Y. G. Panovko and I. I. Gubanova, Stability and Oscillations of Elastic Systems (Consultants Bureau, New York, 1965).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • O. N. Kirillov
    • 1
  • A. P. Seyranian
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations