Zn atoms in lithium niobate and mechanism of their insertion into crystals

  • T. S. Chernaya
  • B. A. Maksimov
  • T. R. Volk
  • N. M. Rubinina
  • V. I. Simonov
Condensed Matter

Abstract

Precision X-ray structural studies were carried out for LiNbO3:Znx single crystals with x=0.0, 2.87, 5.20, and 7.60 at. %. It was found that the insertion of the Zn atoms into the Li position was accompanied by a decrease in the concentration of intrinsic NbLi defects. At x=7.6%, the Zn atoms change their locations in the lattice and partially occupy the Nb positions. This clarifies the structural nature of the “threshold” Zn concentration, which manifests itself as singularities in the concentration dependences of various optical properties. The structural origin of the threshold concentration is likely a common feature of all nonphotorefractive impurities (Mg, Zn, In, and Sc) in LiNbO3. A change in the intrinsic defect structure of the LiNbO3 crystals with different Zn concentrations is discussed.

PACS numbers

61.72.Dd 61.72.Ss 61.66.Fn 61.10.Eq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. F. Schirmer, O. Thiemann, and M. Woehlecke, J. Phys. Chem. Solids 52, 185 (1991).Google Scholar
  2. 2.
    T. Volk, M. Wöhlecke, N. Rubinina, et al., Ferroelectrics 183, 291 (1996).Google Scholar
  3. 3.
    S. C. Abrahams and P. March, Acta Crystallogr., Sect. B: Struct. Sci. 42, 61 (1986).CrossRefGoogle Scholar
  4. 4.
    N. Iyi, K. Kitamura, F. Izumi, et al., J. Solid State Chem. 101, 340 (1992).CrossRefADSGoogle Scholar
  5. 5.
    N. Zotov, H. Boysen, F. Frey, et al., J. Solid State Chem. 101, 340 (1992).Google Scholar
  6. 6.
    P. Lerner, C. Legras, and J. P. Dumas, J. Cryst. Growth 3/4, 231 (1968).CrossRefGoogle Scholar
  7. 7.
    B. C. Grabmayer and F. Otto, J. Cryst. Growth 79, 682 (1986).Google Scholar
  8. 8.
    H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 44, 4877 (1991).CrossRefADSGoogle Scholar
  9. 9.
    B. C. Grabmayer, W. Wersing, and W. Koestler, J. Cryst. Growth 110, 339 (1991).Google Scholar
  10. 10.
    N. Iyi, K. Kitamura, Y. Yajima, et al., J. Solid State Chem. 118, 148 (1995).CrossRefGoogle Scholar
  11. 11.
    Z. I. Ivanova, A. I. Kovrigin, G. V. Luchinskii, et al., Kvantovaya Élektron. (Moscow) 7, 1013 (1980).Google Scholar
  12. 12.
    M. N. Zucker, E. Perenthaler, W. F. Kuhs, et al., J. Appl. Crystallogr. 16, 358 (1983).CrossRefGoogle Scholar
  13. 13.
    T. S. Chernaya, N. N. Bydanov, L. A. Muradyan, et al., Kristallografiya 33, 75 (1988) [Sov. Phys. Crystallogr. 33, 40 (1988)].Google Scholar
  14. 14.
    R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B25, 925 (1969).Google Scholar
  15. 15.
    F. Abdi, M. Aillerie, M. Fontana, et al., Appl. Phys. B: Lasers Opt. B68, 795 (1999).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • T. S. Chernaya
    • 1
  • B. A. Maksimov
    • 1
  • T. R. Volk
    • 1
  • N. M. Rubinina
    • 1
    • 2
  • V. I. Simonov
    • 1
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations