Advertisement

Kolmogorov spectra in one-dimensional weak turbulence

  • V. E. Zakharov
  • O. A. Vasilyev
  • A. I. Dyachenko
Nonlinear Dynamics

Abstract

In this article, we report the results of our numerical simulation of a one-dimensional modified MMT model, which includes the processes of “one-to-three” wave interactions. We show that this model, with properly chosen parameters, behaves according to the weak-turbulence theory. In particular, it demonstrates the validity of the Kolmogorov spectrum over a wide range of wave numbers.

PACS numbers

47.27.Eq 47.35.+i 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Zakharov, V. L’vov, and G. Falkovich, Wave Turbulence (Springer-Verlag, New York, 1992).Google Scholar
  2. 2.
    A. J. Maida, D. W. McLaughlin, and E. G. Tabak, J. Nonlinear Sci. 6, 9 (1997).Google Scholar
  3. 3.
    D. Cai, A. J. Maida, D. W. McLaughlin, and E. G. Tabak, Proc. Natl. Acad. Sci. USA 96, 14216 (1999).Google Scholar
  4. 4.
    V. Zakharov, P. Guyenne, A. Pushkarev, and F. Dias, Preprint of the Centre de Mathematique et Leurs Applcations, Ecole Normal de Cachan #2000-4; Physica D (Amsterdam) (2000) (in press).Google Scholar
  5. 5.
    V. Zakharov, P. Guyenne, A. Pushkarev, and F. Dias, Turbulence d’ondes Dans des Models Unidimensionnels, Corte Rentus (2000) (in press).Google Scholar
  6. 6.
    A. Pushkarev and V. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • V. E. Zakharov
    • 1
  • O. A. Vasilyev
    • 1
  • A. I. Dyachenko
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations