Acoustical Physics

, Volume 47, Issue 2, pp 150–159

Long-range sound propagation in the central region of the Baltic Sea

  • R. A. Vadov
Reviews

Abstract

The data obtained from a set of experiments on the long-range, low-frequency (<5 kHz) sound propagation in the central region of the Baltic Sea are analyzed. The experiments were carried out in the summer season, with a fully developed underwater sound channel. Experimental data on the sound attenuation are presented. A significant excess of the attenuation coefficients over the predicted absorption coefficients is obtained. The quantitative estimates indicate that the sound scattering by internal waves is the most probable mechanism responsible for the observed excessive sound attenuation. The frequency dependence of the attenuation coefficient exhibits a minimum whose position on the frequency axis at the beginning of the summer season noticeably differs from that at the end of summer. The analysis of the propagation conditions allows one to relate the position of this minimum to the critical frequency of the water modes. In addition to the intensity parameters of the sound field, the formation of the time structure of explosion-generated signals propagating in the Baltic underwater sound channel is considered for the case of the sound propagation along the 360-km path crossing the Gotland Hollow. The specific role of the bottom waves in the time structure formation at short distances from the sound source is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. F. Sukhovei, Seas of the World Ocean (Gidometeoizdat, Leningrad, 1986).Google Scholar
  2. 2.
    T. A. Bernikova, Hydrology and Industrial Oceanology (Moscow, 1980).Google Scholar
  3. 3.
    V. P. Tebyakin et al., A Report (Akust. Inst. Akad. Nauk SSSR, Moscow, 1990).Google Scholar
  4. 4.
    H. G. Schneider, R. Thiel, and P. C. Wille, J. Acoust. Soc. Am. 77, 1409 (1985).CrossRefADSGoogle Scholar
  5. 5.
    R. E. Francois and G. R. Garrison, J. Acoust. Soc. Am. 72, 1879 (1982).ADSGoogle Scholar
  6. 6.
    R. Horne, Marine Chemistry (Wiley, New York, 1969; Mir, Moscow, 1972).Google Scholar
  7. 7.
    E. Zarins and J. Ozolins, J. Cons. (Copenhagen) 10(3) (1935).Google Scholar
  8. 8.
    D. W. Dyrssen and L. R. Uppstrom, J. Hum. Env. Res. Man. 3(1) (1974).Google Scholar
  9. 9.
    R. A. Vadov, Akust. Zh. 46, 624 (2000) [Acoust. Phys. 46, 544 (2000)].Google Scholar
  10. 10.
    L. A. Chernov, Wave Propagation in a Random Medium (Akad. Nauk SSSR, Moscow, 1958; McGraw-Hill, New York, 1960).Google Scholar
  11. 11.
    Yu. P. Lysanov and L. M. Lyamshev, in Proceedings of the Fourth European Conference on Underwater Acoustics (Rome, 1998), p. 801.Google Scholar
  12. 12.
    S. D. Richards, J. Acoust. Soc. Am. 103, 205 (1998).ADSGoogle Scholar
  13. 13.
    Sound Transmission through a Fluctuating Ocean, Ed. by S. Flatte (Cambridge Univ. Press, Cambridge, UK, 1979; Mir, Moscow, 1982).Google Scholar
  14. 14.
    R. H. Mellen, D. G. Browning, and L. Goodman, J. Acoust. Soc. Am. 60(5) (1976).Google Scholar
  15. 15.
    C. Garret and W. H. Munk, J. Geophys. Res. 80, 291 (1975).ADSGoogle Scholar
  16. 16.
    R. A. Vadov, Akust. Zh. 40, 930 (1994) [Acoust. Phys. 40, 824 (1994)].Google Scholar
  17. 17.
    R. A. Vadov, Akust. Zh. 44, 749 (1998) [Acoust. Phys. 44, 651 (1998)].Google Scholar
  18. 18.
    M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973).Google Scholar
  19. 19.
    C. Pekeris, Mem.-Geol. Soc. Am., No. 27 (October 15, 1948).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • R. A. Vadov
    • 1
  1. 1.Andreev Acoustics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations