Advertisement

On the spectral and statistical properties of Rayleigh-Taylor mixing

  • A. M. Oparin
  • N. A. Inogamov
  • A. Yu. Dem’yanov
Nonlinear Dynamics

Abstract

Dynamics of turbulent mixing due to the Rayleigh-Taylor instability is considered. The mixing layer consists of a single horizontal array of large-scale structures. The characteristics of these structures are studied by the spectral and statistical methods. Mixing stimulation by long-wavelength noise is studied. It is demonstrated that, for typical homogeneous unscaled noise, self-similarity ht2 is retained. The threshold amplitude of random broadband noise is determined, below which this noise can be ignored. The mixing deceleration by the side boundaries is studied. The stimulation and deceleration effects sizably influence the mixing coefficient α+, increasing and decreasing it, respectively.

PACS numbers

47.20.Bp 47.20.Ma 47.27.Eq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Sharp, Physica D (Amsterdam) 12, 3 (1984).ADSMATHGoogle Scholar
  2. 2.
    H.-J. Kull, Phys. Rep. 206, 197 (1991).CrossRefADSGoogle Scholar
  3. 3.
    N. A. Inogamov, Astrophys. Space Phys. Rev. 10(2), 1 (1999).ADSGoogle Scholar
  4. 4.
    N. A. Inogamov, A. Yu. Dem’yanov, and É. E. Son, Hydrodynamics of Mixing (Mosk. Fiz.-Tekh. Inst., Moscow, 1999).Google Scholar
  5. 5.
    É. I. Asinovskii, V. A. Zeigarnik, E. F. Lebedev, et al., Pulsed MHD Transformers of Chemical Energy into Electrical Power, Ed. by A. E. Sheindlin and V. E. Fortov (Énergoatomizdat, Moscow, 1997).Google Scholar
  6. 6.
    J. Kane, D. Arnett, B. A. Remington, et al., Phys. Plasmas 6(5), 2065 (1999).CrossRefADSGoogle Scholar
  7. 7.
    O. M. Belotserkovskii, Numerical Simulation in Mechanics of Continuous Media (Fizmatgiz, Moscow, 1994, 2nd ed.).Google Scholar
  8. 8.
    O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence: From Order to Chaos (Nauka, Moscow, 2000, 2nd ed.).Google Scholar
  9. 9.
    O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, Zh. Vychisl. Mat. Mat. Fiz. 27, 594 (1987).MathSciNetGoogle Scholar
  10. 10.
    A. M. Oparin, in New in Numerical Simulation: Algorithms, Computing Experiments, Results, Ed. by A. S. Kholodov (Nauka, Moscow, 2000), p. 63.Google Scholar
  11. 11.
    S. Z. Belen’kii and E. S. Fradkin, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 207 (1965).Google Scholar
  12. 12.
    V. E. Neuvazhaev, Prikl. Mekh. Tekh. Fiz., No. 6, 82 (1976).Google Scholar
  13. 13.
    N. A. Inogamov, Pis’ma Zh. Tekh. Fiz. 4, 743 (1978) [Sov. Tech. Phys. Lett. 4, 299 (1978)].Google Scholar
  14. 14.
    M. B. Schneider, G. Dimonte, and B. Remington, Phys. Rev. Lett. 80, 3507 (1998).CrossRefADSGoogle Scholar
  15. 15.
    D. L. Youngs, Phys. Fluids A 3, 1312 (1991).CrossRefADSGoogle Scholar
  16. 16.
    K. I. Read, Physica D (Amsterdam) 12, 45 (1984).ADSGoogle Scholar
  17. 17.
    Yu. V. Yanilkin, Vopr. At. Nauki Tekh., Ser.: Mat. Mod. Fiz. Protsessov, No. 4, 88 (1999).Google Scholar
  18. 18.
    J. Glimm, J. W. Grove, X.-L. Li, et al., SIAM J. Sci. Comput. (USA) 19, 703 (1998).MathSciNetGoogle Scholar
  19. 19.
    N. N. Anuchina, N. S. Es’kov, A. V. Polionov, et al., in Proceedings of the 6th International Workshop on the Physics of Compressible Turbulent Mixing (Imprimerie Caractere, Marseille, 1997).Google Scholar
  20. 20.
    M. D. Kamchibekov, E. E. Meshkov, N. V. Nevmerzhitskii, and E. A. Sotskov, Turbulent Mixing at the Cylindrical Gas-Liquid Interface, Preprint No. 46-96, VNIIÉF, RFYaTs (All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center, Sarov, 1996).Google Scholar
  21. 21.
    U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett. 74, 534 (1995).CrossRefADSGoogle Scholar
  22. 22.
    D. Ofer, U. Alon, D. Shvarts, et al., Phys. Plasmas 3, 3073 (1996).CrossRefADSGoogle Scholar
  23. 23.
    S. I. Anisimov, Ya. B. Zel’dovich, N. A. Inogamov, and M. F. Ivanov, in Shock Waves, Explosions and Detonation, Ed. by J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (AIAA, Washington, DC, 1983); Prog. Astronaut. Aeronaut. 87, 218 (1983).Google Scholar
  24. 24.
    N. A. Inogamov and A. M. Oparin, Zh. Éksp. Teor. Fiz. 116, 908 (1999) [JETP 89, 481 (1999)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • A. M. Oparin
    • 1
  • N. A. Inogamov
    • 2
  • A. Yu. Dem’yanov
    • 3
  1. 1.Institute of Automatic DesignRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations