Physics of the Solid State

, Volume 42, Issue 12, pp 2314–2317 | Cite as

Self-organization in the formation of a nanoporous carbon material

  • S. K. Gordeev
  • S. A. Kukushkin
  • A. V. Osipov
  • Yu. V. Pavlov
Low-Dimensional Systems and Surface Physics


A new mechanism of nanopore formation in carbon materials produced by the interaction of car-bides with chlorine is proposed. In essence, this method is the following. A series of nonlinear chemical reactions proceed in the course of a chemical interaction between chlorine and a carbide. If the external parameters, the component fluxes, and the diffusion rates satisfy certain relations, the self-organization process can occur. This process results in the creation of a periodic nanoporous structure in the carbon material formed. A mathematical model is proposed, the main characteristics of the process are calculated, and the restrictions on the parameters at which the formation of the porous structure becomes possible are found.


Spectroscopy Mathematical Model State Physics Chlorine Porous Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Kirillova, G. A. Meerson, and A. N. Zelikman, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. 3, 90 (1960).Google Scholar
  2. 2.
    N. F. Fedorov, Ross. Khim. Zh. 39(6), 37 (1995).Google Scholar
  3. 3.
    N. F. Fedorov, G. K. Shikhnyuk, and D. N. Gavrilov, Zh. Prikl. Khim. (Leningrad) 54(2), 272 (1982).Google Scholar
  4. 4.
    S. K. Gordeev and A. V. Vartanova, Zh. Prikl. Khim. (St. Petersburg) 67(7), 1080 (1995).Google Scholar
  5. 5.
    A. E. Kravchik, A. S. Osmakov, and R. G. Avarbé, Zh. Prikl. Khim. (Leningrad) 61(11), 2430 (1989).Google Scholar
  6. 6.
    R. N. Kyutt, É. A. Smorgonskaya, S. K. Gordeev, et al., Fiz. Tverd. Tela (St. Petersburg) 41(8), 1484 (1999) [Phys. Solid State 41, 1359 (1999)].Google Scholar
  7. 7.
    P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in Solids (Énergoatomizdat, Moscow, 1990).Google Scholar
  8. 8.
    R. G. Avarbé, S. K. Gordeev, A. V. Vartanova, et al., RF Patent No. 2,084,036, MKl6NO169/00, Byul. No. 19 (1997).Google Scholar
  9. 9.
    G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).Google Scholar
  10. 10.
    S. A. Kukushkin and A. V. Osipov, Fiz. Tverd. Tela (St. Petersburg) 36(5), 1258 (1994) [Phys. Solid State 36, 687 (1994)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • S. K. Gordeev
    • 1
  • S. A. Kukushkin
    • 2
  • A. V. Osipov
    • 2
  • Yu. V. Pavlov
    • 2
  1. 1.Central Research Institute of MaterialsSt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesVasil’evskii ostrov, St. PetersburgRussia

Personalised recommendations