Advertisement

Journal of Experimental and Theoretical Physics

, Volume 91, Issue 4, pp 832–843 | Cite as

Interaction of nucleic acid segments as a result of modification of the network of hydrogen bonds of the solvent

  • V. L. Golo
  • Yu. M. Yevdokimov
  • E. I. Kats
  • V. I. Salyanov
Miscellaneous
  • 26 Downloads

Abstract

It is shown that experimental results on the influence of various factors in the formation efficiency and structure of cholesteric liquid-crystal dispersions of nucleic acids cannot be consistently described using conventional theories of liquid crystal formation. A new model is proposed for the interaction of nucleic acid segments which allows for a change in the particular structure of the solvent hydrogen bonds in the presence of nucleic acid molecules. The conclusions of the model agree with existing spectroscopic and structural investigations of DNA dispersions. According to our model, interaction between nucleic acid molecules and solvent modifies proton tunneling processes in the latter, leading to effective interaction between the nucleic acids. A theoretical analysis of the model is made using a pseudospin formalism in which the effective interaction potential of the nucleic acid segments is calculated. It is shown that this potential may lead to nematic ordering for small distances between the nucleic acid molecules (R ≤ 30 Å) and cholesteric ordering for large distances.

Keywords

Hydrogen Bond Nucleic Acid Elementary Particle Liquid Crystal Crystal Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Lerman, Proc. Natl. Acad. Sci. USA 68, 1886 (1971).ADSGoogle Scholar
  2. 2.
    Yu. M. Yevdokimov, S. G. Skuridin, and V. I. Salynov, Liq. Cryst. 3, 1443 (1988).Google Scholar
  3. 3.
    F. Livolant and M. F. Maestre, Biochemistry 27, 3056 (1988); F. Livolant and A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996).CrossRefGoogle Scholar
  4. 4.
    Yu. M. Evdokimov, V. I. Salyanov, V. L. Golo, et al., Sens. Sist. 14, 245 (2000).Google Scholar
  5. 5.
    A. Ya. Grosberg and A. R. Khokhlov, Sov. Sci. Rev., Sect. A 8, 147 (1987).Google Scholar
  6. 6.
    A. B. Harris, R. D. Kamien, and T. C. Lubensky, Rev. Mod. Phys. 71, 1745 (1999).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Kornychev and S. Leikin, J. Chem. Phys. 107, 3656 (1997); Proc. Natl. Acad. Sci. USA 95, 13579 (1998); Phys. Rev. Lett. 84, 2537 (2000).ADSGoogle Scholar
  8. 8.
    S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977; Mir, Moscow, 1980).Google Scholar
  9. 9.
    P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974; Mir, Moscow, 1977).Google Scholar
  10. 10.
    Y. R. Lin-Liu, Yu Ming Shih, Chia-Wei Woo, and H. T. Tan, Phys. Rev. A 14, 445 (1976).CrossRefADSGoogle Scholar
  11. 11.
    B. Samori, M. A. Osipov, I. Domini, and A. Bartolini, Int. J. Biol. Macromol. 15, 353 (1993).CrossRefGoogle Scholar
  12. 12.
    T. V. Samulski and E. T. Samulski, J. Chem. Phys. 67, 824 (1977).ADSGoogle Scholar
  13. 13.
    V. I. Salyanov and Yu. M. Evdokimov, Dokl. Akad. Nauk 368, 700 (1999).Google Scholar
  14. 14.
    Yu. M. Evdokimov, S. G. Skuridin, and G. B. Lortkipanidze, Liq. Cryst. 12, 1 (1992).Google Scholar
  15. 15.
    Yu. M. Evdokimov, S. G. Skuridin, S. V. Semenov, et al., Biofizika 43, 240 (1998).Google Scholar
  16. 16.
    S. Skuridin, N. Badaev, A. Dembo, et al., Liq. Cryst. 23, 51 (1998).Google Scholar
  17. 17.
    Yu. M. Evdokimov, V. I. Salyanov, A. T. Dembo, and F. Spener, Sens. Sist. 13, 159 (1999).Google Scholar
  18. 18.
    W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984).Google Scholar
  19. 19.
    Y. Yevdokimov, V. Salyanov, and M. Palumbo, Liq. Cryst. 131, 285 (1985); V. I. Salyanov, M. Palumbo, and Yu. M. Evdokimov, Mol. Biol. 27, 869 (1993).Google Scholar
  20. 20.
    B. W. van der Meer, G. Vertogen, A. J. Dekker, and J. G. J. Ypma, J. Chem. Phys. 65, 3935 (1976); E. I. Kats, Zh. Éksp. Teor. Fiz. 74, 2320 (1978) [Sov. Phys. JETP 47, 1205 (1978)].ADSGoogle Scholar
  21. 21.
    R. Podgornik and V. A. Parsegian, Macromolecules 23, 2265 (1990).CrossRefGoogle Scholar
  22. 22.
    S. Neidle, H. M. Berman, and H. S. Shieh, Nature 288, 129 (1980).CrossRefGoogle Scholar
  23. 23.
    E. Clementi and G. Corongiu, J. Chem. Phys. 72, 3979 (1980).ADSGoogle Scholar
  24. 24.
    W. Saenger, Nature 279, 343 (1979).CrossRefGoogle Scholar
  25. 25.
    J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).CrossRefGoogle Scholar
  26. 26.
    N. A. Bul’enkov, Biofizika 36, 181 (1991).Google Scholar
  27. 27.
    E. Clementi and G. Corongiu, Biopolymers 18, 2431 (1979).CrossRefGoogle Scholar
  28. 28.
    K. Kim and M. S. John, Biochim. Biophys. Acta 565, 131 (1979).Google Scholar
  29. 29.
    D. Perahia, M. S. John, and B. Pullman, Biochim. Biophys. Acta 474, 349 (1977); G. Minasov, V. Tereshko, B. Chernov, and L. Malinina, J. Cryst. Growth 122, 136 (1992).Google Scholar
  30. 30.
    M. L. Kopka, A. Fratani, H. R. Drew, and R. E. Dickerson, J. Mol. Biol. 163, 129 (1983).CrossRefGoogle Scholar
  31. 31.
    L. B. Boinovich and A. M. Emelyanenko, Z. Phys. Chem. (Munich) 178, 229 (1992).Google Scholar
  32. 32.
    P. Gallo, cond-mat/0003027 (2000).Google Scholar
  33. 33.
    A. Goldblum, D. Perahia, and A. Pullman, FEBS Lett. 91, 213 (1978).CrossRefGoogle Scholar
  34. 34.
    S. Leikin, D. C. Rau, and A. V. Parsegian, Phys. Rev. A 44, 5272 (1991).ADSGoogle Scholar
  35. 35.
    R. Blinc, J. Phys. Chem. Solids 13, 204 (1960).Google Scholar
  36. 36.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).Google Scholar
  37. 37.
    R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974; Mir, Moscow, 1975).Google Scholar
  38. 38.
    J. M. Ziman, Models of Disorder: the Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).Google Scholar
  39. 39.
    H. H. Strey, J. Wang, R. Podgornik, et al., Phys. Rev. Lett. 84, 3105 (2000); R. D. Kamien and A. J. Levine, Phys. Rev. Lett. 84, 3109 (2000).CrossRefADSGoogle Scholar
  40. 40.
    D. H. van Winkle, M. W. Davidson, W. X. Chen, and R. L. Rill, Macromolecules 23, 4140 (1990).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. L. Golo
    • 1
  • Yu. M. Yevdokimov
    • 2
  • E. I. Kats
    • 3
    • 4
  • V. I. Salyanov
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Laue-Langevin InstituteGrenobleFrance

Personalised recommendations