Advertisement

Journal of Experimental and Theoretical Physics

, Volume 91, Issue 4, pp 653–657 | Cite as

Comments on the Morita equivalence

  • K. Saraikin
Nuclei, Particles, and Their Interaction

Abstract

It is known that the noncommutative Yang-Mills (YM) theory with periodical boundary conditions on a torus at a rational noncommutativity parameter value is Morita equivalent to the ordinary YM theory with twisted boundary conditions on a dual torus. We give a simple derivation of this fact. We describe the one-to-one correspondence between these two theories and the corresponding gauge invariant observables. In particular, we show that under the Morita map, the Polyakov loops in the ordinary YM theory are converted to the open noncommutative Wilson loops discovered by Ishibashi, Iso, Kawai, and Kitazawa.

Keywords

Spectroscopy Boundary Condition State Physics Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Connes, M. R. Douglas, and A. Schwarz, J. High Energy Phys. 9802, 003 (1998); hep-th/9711162.Google Scholar
  2. 2.
    N. Seiberg and E. Witten, J. High Energy Phys. 9909, 032 (1999); hep-th/9908142.Google Scholar
  3. 3.
    N. Nekrasov and A. Schwarz, Commun. Math. Phys. 198, 689 (1998); hep-th/9802068.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    A. Schwarz, Nucl. Phys. B 534, 720 (1998); hep-th/9805034.CrossRefADSMATHGoogle Scholar
  5. 5.
    G. Landi, F. Lizzi, and R. J. Szabo, hep-th/9912130.Google Scholar
  6. 6.
    G. ’t Hooft, Nucl. Phys. B 138, 1 (1978); A. Belavin, Pis’ma Zh. Éksp. Teor. Fiz. 32, 182 (1980) [JETP Lett. 32, 169 (1980)].ADSMathSciNetGoogle Scholar
  7. 7.
    D. B. Fairlie and C. K. Zachos, Phys. Lett. B 224, 101 (1989); D. B. Fairlie, P. Fletcher, and C. K. Zachos, J. Math. Phys. 31, 1088 (1990).ADSMathSciNetGoogle Scholar
  8. 8.
    P. van Baal and B. van Geemen, J. Math. Phys. 27, 455 (1986); D. R. Lebedev and M. I. Polikarpov, Nucl. Phys. B 269, 285 (1986).ADSMathSciNetGoogle Scholar
  9. 9.
    A. Gonzalez-Arroyo, hep-th/9807108.Google Scholar
  10. 10.
    N. Ishibashi, S. Iso, H. Kawai, and Y. Kitazawa, hep-th/9910004.Google Scholar
  11. 11.
    J. Ambjorn, Y. M. Makeenko, J. Nishimura, and R. J. Szabo, hep-th/0002158; J. Ambjorn, Y. M. Makeenko, J. Nishimura, and R. J. Szabo, JHEP 9911, 029 (1999); hep-th/9911041.Google Scholar
  12. 12.
    J. Ambjorn, Y. M. Makeenko, J. Nishimura, and R. J. Szabo, hep-th/0004147.Google Scholar
  13. 13.
    B. Pioline and A. Schwarz, J. High Energy Phys. 9908, 021 (1999); hep-th/9908019.Google Scholar
  14. 14.
    R. Cai and N. Ohta, J. High Energy Phys. 0003, 009 (2000); hep-th/0001213.Google Scholar
  15. 15.
    C. Hofman and E. Verlinde, Nucl. Phys. B 547, 157 (1999); hep-th/9810219.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • K. Saraikin
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations