Journal of Experimental and Theoretical Physics

, Volume 91, Issue 3, pp 488–496 | Cite as

Surface anchoring and temperature variations of the pitch in thin cholesteric layers

  • V. A. Belyakov
  • E. I. Kats


The temperature variations of the cholesteric pitch in thin planar layers of cholesterics and their dependence on the surface anchoring force are investigated theoretically. It is shown that the temperature variations of the pitch in a layer are of a universal character. This is manifested in the fact that they depend not separately on the parameters of the sample but only on one dimensionless parameter S d =K22/dW, where K22 is the torsional modulus in the Frank elastic energy, W is the height of the surface-anchoring potential, and d is the thickness of the layer. The investigation is performed the parameter S d in a range where the change per unit number of cholesteric half-turns within the thickness of the layer accompanying a change in the temperature is due to the slipping of the director on the surface of the layer through the potential barrier for surface anchoring. The critical values of the parameter S d (which are most easily attained experimentally by varying the thickness of the layer), determining the region of applicability of the approach employed, are presented. The temperature variations of the free energy of the layer and the pitch of the cholesteric helix in the layer as well as the temperature hysteresis in the variations of the pitch with increasing and decreasing temperature are investigated for the corresponding values of S d . Numerical calculations of the quantities mentioned above are performed using the Rapini anchoring potential.


Free Energy Temperature Variation Elementary Particle Quantum Field Theory Potential Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Summaries of 7th International Conference on Ferro-electric Liquid Crystals, Darmstadt University of Technology, Germany, 1999.Google Scholar
  2. 2.
    A. B. Harris, R. D. Kamien, and T. C. Lubensky, Rev. Mod. Phys. 71, 1745 (1999).CrossRefADSGoogle Scholar
  3. 3.
    H. Zink and V. A. Belyakov, Mol. Cryst. Liq. Cryst. 265, 445 (1995); Pis’ma Zh. Éksp. Teor. Fiz. 63, 37 (1996) [JETP Lett. 63, 43 (1996)].Google Scholar
  4. 4.
    H. Zink and V. A. Belyakov, Zh. Éksp. Teor. Fiz. 112, 524 (1997) [JETP 85, 285 (1997)]; Mol. Cryst. Liq. Cryst. 329, 457 (1999).Google Scholar
  5. 5.
    V. A. Belyakov and V. E. Dmitrienko, Sov. Sci. Rev., Sect. A 13, 1 (1989).Google Scholar
  6. 6.
    V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Nauka, Moscow, 1988; Springer-Verlag, New York, 1992).Google Scholar
  7. 7.
    T. Furukawa, T. Yamada, K. Ishikawa, et al., Appl. Phys. B 60, 485 (1995).CrossRefGoogle Scholar
  8. 8.
    Z. Zhuang, Y. J. Kim, and J. S. Patel, Phys. Rev. Lett. 84, 1168 (2000).CrossRefADSGoogle Scholar
  9. 9.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).Google Scholar
  10. 10.
    L. M. Blinov, E. I. Kats, and A. A. Sonin, Usp. Fiz. Nauk 152, 449 (1987) [Sov. Phys. Usp. 30, 604 (1987)].Google Scholar
  11. 11.
    L. M. Blinov and V. G. Chigrinov, Electrooptics Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994), Chap. 3.Google Scholar
  12. 12.
    B. Ya. Zel’dovich and N. V. Tabiryan, Zh. Éksp. Teor. Fiz. 81, 1738 (1981) [Sov. Phys. JETP 54, 922 (1981)].Google Scholar
  13. 13.
    T. Ya. Marusii, Yu. A. Reznikov, V. Yu. Reshetnyak, et al., Zh. Éksp. Teor. Fiz. 91, 851 (1986) [Sov. Phys. JETP 64, 502 (1986)].Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980), Part 1.Google Scholar
  15. 15.
    P. G. de Gennes, Langmuir 6, 1448 (1990).Google Scholar
  16. 16.
    S. Pankratz, P. M. Johnson, Y. T. Nguyen, and C. C. Huang, Phys. Rev. E 58, R2721 (1998).CrossRefADSGoogle Scholar
  17. 17.
    E. E. Gorodetskii, E. S. Pikina, and V. E. Podnek, Zh. Éksp. Teor. Fiz. 115, 61 (1999) [JETP 88, 35 (1999)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. A. Belyakov
    • 1
  • E. I. Kats
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Laue-Langevin InstituteGrenobleFrance

Personalised recommendations