Advertisement

Plasma Physics Reports

, Volume 26, Issue 10, pp 840–867 | Cite as

Rates of thermonuclear reactions in dense plasmas

  • V. N. Tsytovich
  • M. Bornatici
Plasma Kinetics

Abstract

The problem of plasma screening of thermonuclear reactions has attracted considerable scientific interest ever since Salpeter’s seminal paper, but it is still faced with controversial statements and without any definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subsequent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general than both Salpeter’s approach and the recently developed statistical approaches and makes it possible to obtain a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the dynamically screened test particle approach is discussed. Corrections to the reaction rates in the solar interior are calculated numerically. It is shown that the corrections to reactions involving 8Band 7Bemay exceed 100%. The results obtained are discussed in connection with the solar neutrino problem. The range of applicability of the approach is also discussed.

Keywords

Static Screening Solar Neutrino Astrophysical Plasma Solar Interior Charge Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Salpeter, Aust. J. Phys. 7, 373 (1954); D. D. Clyton, Principles of Stellar Evolution and Nucleosynthesis (McGraw-Hill, New York, 1968).ADSzbMATHGoogle Scholar
  2. 2.
    C. Carraro, A. Schafer, and S. E. Koonin, Astrophys. J. 331, 565 (1988).CrossRefADSGoogle Scholar
  3. 3.
    V. N. Tsytovich and M. Bornatici, Comments Plasma Phys. Controlled Fusion 1 (4) (2000).Google Scholar
  4. 4.
    E. E. Salpeter and H. M. van Horne, Astrophys. J. 155, 183 (1969).CrossRefADSGoogle Scholar
  5. 5.
    H. E. Dewitt, H. C. Graboske, and M. C. Cooper, Astrophys. J. 181, 439 (1973).CrossRefADSGoogle Scholar
  6. 6.
    B. Jancovici, J. Stat. Phys. 17, 357 (1977).CrossRefGoogle Scholar
  7. 7.
    H. E. Mitler, Astrophys. J. 212, 513 (1977).CrossRefADSGoogle Scholar
  8. 8.
    S. Ichimaru, Rev. Mod. Phys. 65, 255 (1993).CrossRefADSGoogle Scholar
  9. 9.
    A. V. Gruzinov, Astrophys. J. 496, 503 (1998).CrossRefADSGoogle Scholar
  10. 10.
    L. S. Brown and R. F. Sawyer, Rev. Mod. Phys. 69, 411 (1997).CrossRefADSGoogle Scholar
  11. 11.
    N. J. Shaviv and G. Shaviv, Astrophys. J. 468, 433 (1996).CrossRefADSGoogle Scholar
  12. 12.
    M. Brüggen and D. O. Gough, Astrophys. J. 488, 867 (1997).CrossRefADSGoogle Scholar
  13. 13.
    M. Sahrling and G. Chabrier, Astrophys. J. 493, 879 (1998).CrossRefADSGoogle Scholar
  14. 14.
    C. W. Johnson, E. Kolbe, S. E. Koonin, and K. Langanke, Astrophys. J. 392, 320 (1992).CrossRefADSGoogle Scholar
  15. 15.
    J. Weneser, Phys. Rev. D 52, 640 (1995).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Gruzinov and J. N. Bahcall, Astrophys. J. 504, 996 (1998).CrossRefADSGoogle Scholar
  17. 17.
    G. Shaviv and N. J. Shaviv, Phys. Rep. 311, 99 (1999).ADSGoogle Scholar
  18. 18.
    S. Ichimaru, Statistical Plasma Physics: Basic Principles (Addison-Wesley, Reading, 1992).Google Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  20. 20.
    V. N. Tsytovich, Lectures on Nonlinear Plasma Kinetics (Springer-Verlag, Berlin, 1995).Google Scholar
  21. 21.
    V. L. Ginzburg and V. N. Tsytovich, Transition Radiation and Transition Dispersion (Nauka, Moscow, 1984).Google Scholar
  22. 22.
    A. V. Gruzinov and J. N. Bahcall, Astrophys. J. 490, 437 (1998).ADSGoogle Scholar
  23. 23.
    A. V. Brown and R. F. Sawyer, Astrophys. J. 489, 968 (1998).ADSGoogle Scholar
  24. 24.
    N. N. Bogolyubov, in Studies in Statistical Mechanics, Ed. by J. de Boer and G. E. Uhlenbeck (Gostekhizdat, Moscow, 1946; Wiley, New York, 1961), Vol. 1.Google Scholar
  25. 25.
    Yu. L. Klimontovich, Usp. Fiz. Nauk 167, 23 (1997) [Phys. Usp. 40, 21 (1997)].Google Scholar
  26. 26.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).Google Scholar
  28. 28.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1956; Pergamon, Oxford, 1977).Google Scholar
  29. 29.
    V. N. Tsytovich, Zh. Éksp. Teor. Fiz. 42, 457 (1962) [Sov. Phys. JETP 15, 320 (1962)].zbMATHGoogle Scholar
  30. 30.
    J. N. Bahcall, Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989).Google Scholar
  31. 31.
    J. N. Bahcall, R. T. Pinsonneault, and G. J. Wasserburg, Rev. Mod. Phys. 67, 781 (1995).CrossRefADSGoogle Scholar
  32. 32.
    C. Ciacio, S. Degl’Innocenti, and B. Ricci, Astron. Astrophys., Suppl. Ser. 123, 449 (1997).CrossRefADSGoogle Scholar
  33. 33.
    P. Morel, B. Pichon, J. Provost, and G. Berthomieu, Astron. Astrophys. 350, 275 (1999).ADSGoogle Scholar
  34. 34.
    T. A. Kirsten, Rev. Mod. Phys. 71, 1213 (1999).CrossRefADSGoogle Scholar
  35. 35.
    A. Dar and G. Shariv, Phys. Rep. 311, 115 (1999).CrossRefADSGoogle Scholar
  36. 36.
    V. S. Berezinsky, G. Fiorentini, and M. Lissia, Phys. Lett. B 365, 185 (1998).ADSGoogle Scholar
  37. 37.
    B. Ricci, S. Degl’Innocenti, and G. Fiorentini, Phys. Rev. C 52, 1095 (1995).CrossRefADSGoogle Scholar
  38. 38.
    V. N. Tsytovich, R. Bingham, U. de Angelis, et al., Astropart. Phys. 5, 197 (1996).ADSGoogle Scholar
  39. 39.
    V. N. Tsytovich, R. Bingham, U. de Angelis, and A. Forlani, Usp. Fiz. Nauk 166, 113 (1996) [Phys. Usp. 39, 103 (1996)].Google Scholar
  40. 40.
    J. N. Bahcall, Phys. Rev. 128, 1297 (1962).CrossRefADSGoogle Scholar
  41. 41.
    S. Degl’Innocenti, W. A. Dziembowski, G. Fiorentini, and B. Ricci, Astropart. Phys. 7, 77 (1997).ADSGoogle Scholar
  42. 42.
    J. Montalban and E. Schatzman, Astron. Astrophys. 351, 347 (1999).ADSGoogle Scholar
  43. 43.
    N. N. Aleksandrov and A. N. Starostin, Zh. Éksp. Teor. Fiz. 113, 1661 (1998) [JETP 86, 903 (1998)].Google Scholar
  44. 44.
    S. Turk-Chieze, Phys. Rep. 150, 1 (1995).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. N. Tsytovich
    • 1
  • M. Bornatici
    • 2
  1. 1.Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.INFM, Department of Physics A. VoltaPaviaItaly

Personalised recommendations