Intermediate asymptotic expressions for high-order spin correlation functions in a two-dimensional classical ferromagnet

  • I. V. Kolokolov
Condensed Matter

Abstract

Different-point spin correlation functions are calculated for a two-dimensional classical ferromagnet in a pacerturbative range of distances r: a<rm−1, where a is the lattice parameter and m−1 is the correlation length. The expressions for the four-and higher-order correlation functions are presented.

PACS numbers

75.10.Hk 75.70.Ak 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1996).Google Scholar
  2. 2.
    A. M. Polyakov, Phys. Lett. B 59, 79 (1975).ADSMathSciNetGoogle Scholar
  3. 3.
    V. V. Lebedev, Zh. Éksp. Teor. Fiz. 87, 1481 (1984) [Sov. Phys. JETP 60, 851 (1984)].Google Scholar
  4. 4.
    A. M. Polyakov, Gage Fields and Strings (Inst. Teor. Fiz. im. L. D. Landau, 1995).Google Scholar
  5. 5.
    Al. B. Zamolodchikov and A. B. Zamolodchikov, Pis’ma Zh. Éksp. Teor. Fiz. 26, 608 (1977) [JETP Lett. 26, 457 (1977)].Google Scholar
  6. 6.
    A. M. Polyakov and P. B. Wiegmann, Phys. Lett. B 131, 121 (1983).ADSMathSciNetGoogle Scholar
  7. 7.
    P. B. Wiegmann, Pis’ma Zh. Éksp. Teor. Fiz. 41, 79 (1985) [JETP Lett. 41, 95 (1985)].Google Scholar
  8. 8.
    V. A. Fateev, V. A. Kazakov, and P. B. Wiegmann, Nucl. Phys. B 424, 505 (1994).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982, 2nd ed.; Pergamon, Oxford, 1979).Google Scholar
  10. 10.
    J. Balog and M. Niedermaier, Nucl. Phys. B 500, 421 (1997).CrossRefADSGoogle Scholar
  11. 11.
    F. Dyson, Phys. Rev. 102, 1217 (1956).ADSMathSciNetGoogle Scholar
  12. 12.
    S. V. Maleev, Zh. Éksp. Teor. Fiz. 33, 1010 (1957) [Sov. Phys. JETP 6, 776 (1958)].MATHGoogle Scholar
  13. 13.
    I. V. Kolokolov, Phys. Lett. A 114, 99 (1986).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    I. V. Kolokolov and E. V. Podivilov, Zh. Éksp. Teor. Fiz. 95, 211 (1989) [Sov. Phys. JETP 68, 119 (1989)].Google Scholar
  15. 15.
    M. Chertkov and I. Kolokolov, Zh. Éksp. Teor. Fiz. 106, 1525 (1994) [JETP 79, 824 (1994)].Google Scholar
  16. 16.
    V. V. Sudakov, Zh. Éksp. Teor. Fiz. 30, 87 (1956) [Sov. Phys. JETP 3, 65 (1956)].MATHMathSciNetGoogle Scholar
  17. 17.
    A. I. Larkin and D. E. Khmel’nitskii, Zh. Éksp. Teor. Fiz. 56, 2087 (1969) [Sov. Phys. JETP 29, 1123 (1969)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • I. V. Kolokolov
    • 1
  1. 1.Budker Institute of Nuclear Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations