Astronomy Reports

, Volume 44, Issue 10, pp 665–684 | Cite as

Globular cluster subsystems in the galaxy

  • T. V. Borkova
  • V. A. Marsakov


Data from the literature are used to construct a homogeneous catalog of fundamental astrophysical parameters for 145 globular clusters of the Milky Way Galaxy. The catalog is used to analyze the relationships between chemical composition, horizontal-branch morphology, spatial location, orbital elements, age, and other physical parameters of the clusters. The overall globular-cluster population is divided by a gap in the metallicity function at [Fe/H]=−1.0 into two discrete groups with well-defined maxima at [Fe/H]=−1.60±0.03 and −0.60±0.04. The mean spatial-kinematic parameters and their dispersions change abruptly when the metallicity crosses this boundary. Metal-poor clusters occupy a more or less spherical region and are concentrated toward the Galactic center. Metal-rich clusters (the thick disk subsystem), which are far fewer in number, are concentrated toward both the Galactic center and the Galactic plane. This subsystem rotates with an average velocity of Vrot=165±28 km/s and has a very steep negative vertical metallicity gradient and a negligible radial gradient. It is, on average, the youngest group, and consists exclusively of clusters with extremely red horizontal branches. The population of spherical-subsystem clusters is also inhomogeneous and, in turn, breaks up into at least two groups according to horizontal-branch morphology. Clusters with extremely blue horizontal branches occupy a spherical volume of radius ∼9 kpc, have high rotational velocities (Vrot=77±33 km/s), have substantial and equal negative radial and vertical metallicity gradients, and are, on average, the oldest group (the old-halo subsystem). The vast majority of clusters with intermediate-type horizontal branches occupy a more or less spherical volume ≈18 kpc in radius, which is slightly flattened perpendicular to the Z direction and makes an angle of ≈30° to the X-axis. On average, this population is somewhat younger than the old-halo clusters (the young-halo subsystem), and exhibits approximately the same metallicity gradients as the old halo. As a result, since their Galactocentric distance and distance from the Galactic plane are the same, the young-halo clusters have metallicities that are, on average, Δ[Fe/H] ≈0.3 higher than those for old-halo clusters. The young-halo subsystem, which apparently consists of objects captured by the Galaxy at various times, contains many clusters with retrograde orbits, so that its rotational velocity is low and has large errors, Vrot=−23±54 km/s. Typical parameters are derived for all the subsystems, and the mean characteristics of their member globular clusters are determined. The thick disk has a different nature than both the old and young halos. A scenario for Galactic evolution is proposed based on the assumption that only the thick-disk and old-halo subsystems are genetically associated with the Galaxy. The age distributions of these two subsystems do not overlap. It is argued that heavy-element enrichment and the collapse of the proto-Galactic medium occurred mainly in the period between the formation of the old-halo and thick-disk subsystems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Marsakov and A. A. Suchkov, Astron. Zh. 54, 1232 (1977) [Sov. Astron. 21, 700 (1977)].ADSGoogle Scholar
  2. 2.
    R. Zinn, Astrophys. J. 293, 424 (1985).CrossRefADSGoogle Scholar
  3. 3.
    R. Zinn, in The Globular Cluster-Galaxy Connection, Ed. by H. Smith and J. Brodee, ASP Conf. Ser. 48, 38 (1993).Google Scholar
  4. 4.
    G. S. Da Costa and T. F. Armandroff, Astron. J. 109, 2533 (1995).ADSGoogle Scholar
  5. 5.
    W. E. Harris, Astron. J. 112, 1487 (1996).CrossRefADSGoogle Scholar
  6. 6.
    P. Thomas, Mon. Not. R. Astron. Soc. 238, 1319 (1989).ADSGoogle Scholar
  7. 7.
    R. Zinn and M. J. West, Astrophys. J., Suppl. Ser. 55, 45 (1984).CrossRefADSGoogle Scholar
  8. 8.
    S. van den Bergh, Mem. Soc. Astron. Ital. 54, 199 (1983).ADSGoogle Scholar
  9. 9.
    R. F. Webbink, in IAU Symposium 113: Dynamics of Star Clusters, Ed. by J. Goodman and P. Hut, p. 541 (1985).Google Scholar
  10. 10.
    E. Carretta and R. G. Gratton, Astron. Astrophys., Suppl. Ser. 121, 95 (1997).CrossRefADSGoogle Scholar
  11. 11.
    A. V. Mironov and N. N. Samus’, Perem. Zvezdy 19, 337 (1974).ADSGoogle Scholar
  12. 12.
    I. N. Reid, Astron. J. 114, 161 (1997).ADSGoogle Scholar
  13. 13.
    B. Hauck and M. Mermilliod, Astron. Astrophys., Suppl. Ser. 129, 431 (1998).CrossRefADSGoogle Scholar
  14. 14.
    R. Buonnano, C. E. Corsi, and F. Fusi Pecci, Astron. Astrophys. 216, 80 (1989).ADSGoogle Scholar
  15. 15.
    R. G. Gratton, Astron. Astrophys. 147, 169 (1985).ADSGoogle Scholar
  16. 16.
    R. Buonnano, C. E. Corsi, and F. Fusi Pecci, Astron. Astrophys. 216, 80 (1989).ADSGoogle Scholar
  17. 17.
    A. Sarajedini and G. R. King, Astron. J. 98, 1624 (1989).CrossRefADSGoogle Scholar
  18. 18.
    B. Chaboyer, A. Sarajedini, and P. Demarque, Astrophys. J. 394, 515 (1992).CrossRefADSGoogle Scholar
  19. 19.
    A. Sarajedini, Y.-W. Lee, and D.-H. Lee, Astrophys. J. 450, 712 (1995).CrossRefADSGoogle Scholar
  20. 20.
    B. Chaboyer and Y.-C. Kim, Astrophys. J. 454, 767 (1995).CrossRefADSGoogle Scholar
  21. 21.
    B. Chaboyer, P. Demarque, and A. Sarajedini, Astrophys. J. 459, 558 (1996).CrossRefADSGoogle Scholar
  22. 22.
    H. B. Richer, W. E. Harris, C. Fahlman, et al., Astrophys. J. 463, 602 (1996).CrossRefADSGoogle Scholar
  23. 23.
    M. Salaris and A. Weiss, Astron. Astrophys. 327, 107 (1997).ADSGoogle Scholar
  24. 24.
    R. Buonanno, C. Corsi, M. Bellazzini, et al., Astron. J. 113, 706 (1997).CrossRefADSGoogle Scholar
  25. 25.
    F. Fusi Pecci, F. R. Ferraro, M. Bellazini, et al., Astron. J. 105, 1145 (1993).CrossRefADSGoogle Scholar
  26. 26.
    B. Douphole, M. Geffert, J. Colin, et al., Astron. Astrophys. 313, 119 (1996).ADSGoogle Scholar
  27. 27.
    S. van den Bergh, Astron. J. 110, 1171 (1995).ADSGoogle Scholar
  28. 28.
    D. F. Chernoff and S. Djorgovski, Astrophys. J. 339, 904 (1989).CrossRefADSGoogle Scholar
  29. 29.
    T. E. Armandroff, Astron. J. 97, 375 (1989).ADSGoogle Scholar
  30. 30.
    W. E. Harris, personal communication.Google Scholar
  31. 31.
    Yu. G. Shevelev and V. A. Marsakov, Astron. Zh. 72, 321 (1995) [Astron. Rep. 39, 284 (1995)].ADSGoogle Scholar
  32. 32.
    S. van den Bergh, Astrophys. J. 375, 594 (1991).ADSGoogle Scholar
  33. 33.
    A. Burkert and G. H. Smith, Astrophys. J. Lett. 474, L15 (1997).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • T. V. Borkova
    • 1
  • V. A. Marsakov
    • 1
  1. 1.Rostov State UniversityRostov-on-DonRussia

Personalised recommendations